A TFX component to evaluate models trained by a TFX Trainer component.
Inherits From: BaseBeamComponent
, BaseComponent
, BaseNode
tfx.v1.components.Evaluator(
examples: tfx.v1.types.BaseChannel
,
model: Optional[tfx.v1.types.BaseChannel
] = None,
baseline_model: Optional[tfx.v1.types.BaseChannel
] = None,
feature_slicing_spec: Optional[Union[tfx.v1.proto.FeatureSlicingSpec
, tfx.v1.dsl.experimental.RuntimeParameter
]] = None,
fairness_indicator_thresholds: Optional[Union[List[float], tfx.v1.dsl.experimental.RuntimeParameter
]] = None,
example_splits: Optional[List[str]] = None,
eval_config: Optional[tfma.EvalConfig] = None,
schema: Optional[tfx.v1.types.BaseChannel
] = None,
module_file: Optional[str] = None,
module_path: Optional[str] = None
)
Used in the notebooks
Component outputs
contains:
evaluation
: Channel of type standard_artifacts.ModelEvaluation
to
store
the evaluation results.
blessing
: Channel of type `standard_artifacts.ModelBlessing' that
contains the blessing result.
See the Evaluator guide for
more details.
Args |
examples
|
A BaseChannel of type standard_artifacts.Examples , usually
produced by an ExampleGen component. required
|
model
|
A BaseChannel of type standard_artifacts.Model , usually produced
by a Trainer component.
|
baseline_model
|
An optional channel of type 'standard_artifacts.Model' as
the baseline model for model diff and model validation purpose.
|
feature_slicing_spec
|
Deprecated, please use eval_config instead. Only
support estimator.
evaluator_pb2.FeatureSlicingSpec
instance that describes how Evaluator should slice the data.
|
fairness_indicator_thresholds
|
Optional list of float (or
RuntimeParameter) threshold values for use with TFMA fairness
indicators. Experimental functionality: this interface and
functionality may change at any time.
to additional documentation for TFMA fairness indicators here.
|
example_splits
|
Names of splits on which the metrics are computed.
Default behavior (when example_splits is set to None or Empty) is using
the 'eval' split.
|
eval_config
|
Instance of tfma.EvalConfig containg configuration settings
for running the evaluation. This config has options for both estimator
and Keras.
|
schema
|
A Schema channel to use for TFXIO.
|
module_file
|
A path to python module file containing UDFs for Evaluator
customization. This functionality is experimental and may change at any
time. The module_file can implement following functions at its top
level.
def custom_eval_shared_model(
eval_saved_model_path, model_name, eval_config, **kwargs,
) -> tfma.EvalSharedModel:
def custom_extractors(
eval_shared_model, eval_config, tensor_adapter_config,
) -> List[tfma.extractors.Extractor]:
|
module_path
|
A python path to the custom module that contains the UDFs.
See 'module_file' for the required signature of UDFs. This functionality
is experimental and this API may change at any time. Note this can not
be set together with module_file.
|
Attributes |
outputs
|
Component's output channel dict.
|
Methods
with_beam_pipeline_args
with_beam_pipeline_args(
beam_pipeline_args: Iterable[Union[str, placeholder.Placeholder]]
) -> 'BaseBeamComponent'
Add per component Beam pipeline args.
Args |
beam_pipeline_args
|
List of Beam pipeline args to be added to the Beam
executor spec.
|
Returns |
the same component itself.
|
with_node_execution_options
with_node_execution_options(
node_execution_options: utils.NodeExecutionOptions
) -> typing_extensions.Self
Class Variables |
POST_EXECUTABLE_SPEC
|
None
|
PRE_EXECUTABLE_SPEC
|
None
|