ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
The document summarizes a research paper that compares the performance of MLP-based models to Transformer-based models on various natural language processing and computer vision tasks. The key points are:
1. Gated MLP (gMLP) architectures can achieve performance comparable to Transformers on most tasks, demonstrating that attention mechanisms may not be strictly necessary.
2. However, attention still provides benefits for some NLP tasks, as models combining gMLP and attention outperformed pure gMLP models on certain benchmarks.
3. For computer vision, gMLP achieved results close to Vision Transformers and CNNs on image classification, indicating gMLP can match their data efficiency.
11. オートエンコーダー(AE)
AE (オートエンコーダー)
⼊入⼒力力データを再現するような[表現h, encoder, decoder] を学習する
dAE(denoising Auto Encoder)
ノイズを加えたデータで学習させる
スパースオートエンコーダー
出⼒力力層がスパースになるように正規化したもの
y(=x)
h
入力データ
x
Decoder
y = f ´(W´h)
スパースオートエンコーダーでは次の
評価関数を最小化する
Encoder
h = f (Wx)
正規化項
11