SlideShare a Scribd company logo
#はじパタ  LT

実装  ディープラーニング

@0kayu
1
紹介


岡  右⾥里里恵  (早⼤大理理⼯工M1)    



出⾝身、住まい等          横浜



趣味  映画鑑賞,  シンセ  /  kaggle歴  3ヶ⽉月      



好きな物  redbullと最近はドクペ



@0kayu

研究    脳画像を⽤用いた診断補助法の開発

2
DEEP LEARNING
1.  Deep  Learning  の  仕組み スライド	
  がたくさん!	
  
2.  Deep  Learning  パラメータ/学習法  について
3.  実装:  パッケージ調べ  ←	
  今日はこれ!!!!!!!!!!!

ディープラーニングをもっと、もっと手軽に

3
1. ディープラーニング概要(1)
ディープラーニング?

画像認識を例にして....

従来法

ディープ
ラーニング

h'p://www.slideshare.net/kazoo04/deep-­‐learning-­‐15097274
4
1. ディープラーニング概要(1)
ディープラーニングの定義(諸説あり)
以下を満足するDeep	
  Architecture
・多層構造をもつ
・階層的な処理理である
・⾼高位の問題解決を⽬目的とする

5
1. ディープラーニング概要(2)
プレトレーニング  +  ファインチューニング

各層の●,●,●は
入力データ●の特徴量を表す

http://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/
CVIM_tutorial_deep_learning.pdf

6
1. ディープラーニング概要(2)

判別器

プレトレーニング  +  ファインチューニング

SVM,  LR,  ...  etc

AE(3)
AE(2)
AE(1)

教師無し学習器群
AE:オートエンコーダー
RBM:制限ボルツマンマシン

http://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/
CVIM_tutorial_deep_learning.pdf

DBM,	
  stacking	
  AE

DBN,	
  stacking	
  AE

7
制約つきボルツマンマシン(RBM)
•  ⽣生成モデルの1つ
生成モデルの学習方法

vi,  hj  は{0,1}をとる
h/p://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/CVIM_tutorial_deep_learning.pdf
8
RBM +

DeepStructure

制約つきボルツマンマシン(RBM)

可視層と隠れ層からなる2層ネット
ワーク

判別器

DBN(Deep	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Belief	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Network)

RBM(3)
RBM(2)

DBM(Deep	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Boltzma
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Machine)

RBM(1)
vi, hj	
  =	
  {0,1}

入力データ
9
RBM +

DeepStructure

+

max	
  pooling

ConvDBN	
  (ConvoluFonal	
  Belief	
  Network)	
  
RBMに畳み込みニューラル

ネットで使われるmax	
  pooling
を追加したもの

http://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/CVIM_tutorial_deep_learning.pdf

10
オートエンコーダー(AE)
  AE  (オートエンコーダー)
⼊入⼒力力データを再現するような[表現h,  encoder,  decoder]  を学習する
  dAE(denoising  Auto  Encoder)
ノイズを加えたデータで学習させる
  スパースオートエンコーダー  
出⼒力力層がスパースになるように正規化したもの
y(=x)

h
入力データ
x

Decoder

y = f ´(W´h)

スパースオートエンコーダーでは次の
評価関数を最小化する

Encoder

h = f (Wx)
正規化項
11
AE

+

DeepStructure

Stacked  Auto  Encoder
学習した表現yを、次の層のオートエンコーダーの⼊入⼒力力とする
AE(2)の入力データ

y(=x)

h
AE(2)の入力データ

入力データ
x

レイヤー1(AE1)

レイヤー2(AE2)

12
2. 各層の学習法について
基本    バッチ学習  +  確率率率的勾配法  (SGD)  
バッチ学習  :  全データで学習
確率率率的勾配法(SGD)  :  t個⽬目のサンプルだけを⽤用いて重みが更更新可能
→  データをミニバッチに分け、ミニバッチごとに重みを更更新
→  学習の⾼高速化  !  
バッチ関連のパラメータ
ミニバッチサイズ

データを分割する量量。分割したデータ(バッチ)を⽤用いて学習させる。

バッチ毎の学習

バッチを学習させて、バッチごとにパタメータを更更新

モニター数(⇔速度度に影響)

すべてのバッチのうち、⼀一部のバッチのみvalidationをしてモデルが学習できているか確認す
る

max_̲epoch

1つのデータを何回(何epoch)繰り返して学習させるか
13
2. パラメータについて
1.  機械全体の形
  レイヤーの数
  教師無し学習器(モデル)の選択
  判別器の選択

太字  =  「特に重要なパラメータ」

2.  各層のモデルのパラメータ
  隠れ層のユニット数
  重みの正規化
  ユニットのスパース化
  活性化関数の選択

3.  最適化のためのパラメータ
  学習⽅方法
  学習率率率  (初期値,  減衰)
  ミニバッチサイズ
  イテレーション回数
  Momentum

4.  その他  

  重みの初期化  (のスケール)
  乱数
  前処理理

おすすめの参考スライド http://www.slideshare.net/koji_matsuda/practical-recommendationfordeeplearning
14
3. 実装 : 現状の関連コード比較
pylearn2
python
+theano

元の言語

Torch7

Lua

python
numpy+scipy

nolearn deepnet
python
+ sklearn

△

導入しやすさ(mac)

ディープラーニン RBM, DBN, AE,
MLP, Maxout
グの種類等

ー

python
+ gnumpy
ー

RBM, AE,
DBN

DBN, RBM

RBM, AE, DBM,
DBN, CNN, feedforward NN

ー

GPU計算
とっつきやすさ

入力データの準備
特徴

sugomori
さん

△
△
種類が豊富, 画
像の可視化

ー

ー

ー
matlab
ライク

ー

Java版あり,

オプションが

ー
GPU計算が前提

多いsklearn風
シンプル
pylearn2	
  	
  http://deeplearning.net/software/pylearn2/index.html
DL先→ torch7	
  	
  	
  	
  	
  	
  http://www.torch.ch/manual/install/index
sugomori	
  	
  http://blog.yusugomori.com/post/42424440144/pythondeep-learning-stacked-denoising
nolearn	
  	
  	
  	
  h'ps://github.com/dnouri/nolearn	
  or	
  pip	
  install	
  nolearn
deepnet	
  	
  	
  h'ps://github.com/niQshsrivastava/deepnet

15
1.  pylearn2

市民権争い pylearn2 VS torch7

  利利点
-‐‑‒  Benjio先⽣生(先のスライドの原著)  の最新のアルゴリズムが実装されて
いる  (Maxout等)
-‐‑‒  市⺠民権の獲得に積極的  (kaggleのベンチマーク)
-‐‑‒  実装の⾒見見た⽬目は綺麗麗,  評価を下すのにmonitor.py  がなかなか使える
-‐‑‒  設定をエディットしやすい
  ⽋欠点

-‐‑‒    データ構造が⽞玄⼈人向け、慣れれば快適...??
-‐‑‒    公式HPのチュートリアルやドキュメントが開発途中
-‐‑‒    pylearn2のgoogle  groups等を追う姿勢が⼤大事

16
1.  pylearn2

DL実装の流れ@pylearn2(1)
layer_̲1.yaml

1層⽬目学習
train	
  =	
  yaml_parse.load(layer1_yaml)
train.main_loop() **
dae_l1.pkl

layer_̲2.yaml

2層⽬目学習
train	
  =	
  yaml_parse.load(layer2_yaml)
train.main_loop()
dae_l2.pkl

mlp.yaml

判別器学習
train	
  =	
  yaml_parse.load(mlp_yaml)
train.main_loop()
mlp_best.pkl

簡単3ステップ+α
STEP1:	
  データをpylearn2のデータ形式で登録
(ベンチマーク系は既に登録済み)

STEP2:	
  YAMLファイル形式(テンプレあり)で、
   train{入力データ,学習器,学習法}を指定
STEP3:	
  train.pyに作った	
  *.yamlを放り込む
STEPα:	
  モニター結果から学習できてるか判断

**:	
  $	
  train.py	
  layer_1.yaml	
  でも可

17
1.  pylearn2

DL実装の流れ@pylearn2(1)

前準備
インストール時にあらかじめ{PYLEARN2_DATA_PATH}にdataの保存場所のパスを
通しておく

ベンチマークを用意するには
${PYLEARN2_DATA_PAHT}/mnist/以下にMNISTデータを入れておく.
dataset.pyを作る必要はない

自分のデータを用意するには
例 : kaggleのicml_2013_emotionsをデータとして登録
1. dataset.py を作成
.csvの場合はemotion_dataset.py が参考になる。
2. ${PYLEARN2_DATA_PATH}/icml_2013_emotions
を作成し、中にデータをいれる
18
1.  pylearn2

DL実装の流れ@pylearn2(2)

2層目の学習で、train.pyに与えるYAMLファイルの例
!obj:pylearn2.train.Train {
dataset: &train !obj:pylearn2.datasets.transformer_dataset.TransformerDataset {
raw: !obj:pylearn2.datasets.mnist.MNIST {
1.	
  入力データ:	
  
which_set: 'train',
start: 0,
#データのうち0から50000を学習
TransformerDataset(MNIST)
stop: 50000
},
transformer: !pkl: "./dae_l1.pkl"
},
model: !obj:pylearn2.models.autoencoder.DenoisingAutoencoder {
nvis : 500, #visible layerの次元
2.	
  学習器	
  :	
  Denoising	
  Autoencoder
nhid : 500, #hidden layerの次元
irange : 0.05,
corruptor: !obj:pylearn2.corruption.BinomialCorruptor {
corruption_level: .3, #ノイズの程度
},
act_enc: "tanh",
act_dec: null,
# Linear activation on the decoder side.
},
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD {
learning_rate : 1e-3, #学習率
3.	
  学習法:	
  StochasQcGradient	
  Descent
batch_size : 100,
#バッチサイズ(100データごとに学習)
monitoring_batches : 5,
#モニターするバッチの数
monitoring_dataset : *train,
cost : !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError {},
termination_criterion : !obj:pylearn2.termination_criteria.EpochCounter {
max_epochs: 10,
},
},
save_path: "./dae_l2.pkl",
save_freq: 1
}

19
1.  pylearn2

DL実装の流れ@pylearn2(3)

評価例	
  	
  	
  
$	
  print_monitor.py	
  <学習して出力した	
  *.pkl>	
  や	
  summarize_model.py	
  *.pkl
epochs	
  seen:	
  	
  10
Qme	
  trained:	
  	
  141.956558943
learning_rate	
  :	
  0.001
monitor_seconds_per_epoch	
  :	
  11.0
objecQve	
  :	
  11.414127059

$	
  plot_monitor.py	
  	
  <学習して出力した	
  *.pkl	
  >

→	
  デモ

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20
1.  pylearn2

DL実装の流れ@pylearn2(4)

重みの可視化について
○	
  学習器にオートエンコーダーを用いた場合
一層目	
  →	
  show_weights.py
二層目→	
  	
  ×	
  

○	
  学習器にRBMを用いた場合
一層目→	
  show_weights.py

$:	
  show_examples.py	
  	
  データ.yaml

二層目→	
  top_filters.py	
  

○	
  各層の重みの値
layer	
  =	
  parse.load(“モデル名.pkl”)
W	
  =	
  layer.weights()

$:	
  show_weights.py	
  1層目のモデル.pkl	
  -­‐-­‐out=”hoge.png”
21
1.  pylearn2

pylearn2を今からはじめるには

公式のドキュメント  +  script以下のコードのコメントから学ぶ
  ディープラーニングの知識識をコードから学びたい
→  pylearn2の前⾝身の    http://deeplearning.net/tutorial/
→  pylearn2/srcripts/tutorials/*.ipynb      :  数式や⽂文章付きで学べる
  ええい!とにかく試してみたい!かじりたい!
→  pylearn2/scripts/tutorials/stacked_̲autoencoders.ipynb
→  pylearn2/scripts/tutorials/dbm_̲demo/rbm.yaml
  kaggleに殴り込みをしようと思うんだが...  
  ⼿手持ちのデータをさくっとディープラーニングできないかな~∼
→  pylearn2/scripts/icml_̲2013_̲wrepl/emotions/
22
2.  その他のpython系パッケージ

  特徴

-‐‑‒  Theanoを覚えるのが⼤大変なあなたに
-‐‑‒  インストールが簡単,
-‐‑‒  SGD/RBM/dA      多値ロジスティック回帰    が使⽤用可能
-‐‑‒  sparse.matrix  に対応していないので、⼤大規模疎⾏行行列列は扱えない
-‐‑‒  少量量のデータならばnumpy+scipyのほうがてっとり早い
-‐‑‒  速度度はpylearn2と⼤大きく変わらない  (CPU計算の場合)

23
2.  numpy+scipy

numpy+scipy(使用例)
全体の構造を作成

プレトレーニング

24
3.  nolearn

nolearn使い方(1) インストール	
  は、$	
  pip	
  install	
  nolearn

h'p://packages.python.org/nolearn/
25
3.  nolearn

nolearn使い方(2)

26
3.  nolearn

nolearn使い方(3)

27
ありがとうございました

28
参考文献等
ディープラーニングチュートリアル

h$p://www.vision.is.tohoku.ac.jp/files/9313/6601/7876/CVIM_tutorial_deep_learning.pdf

第7章 パーセプトロン型学習規則 #はじパタ
http://www.slideshare.net/Tyee/f5up

自然言語処理まわりのDeep Learningを自分なりにまとめてみた
http://kiyukuta.github.io/2013/09/28/casualdeeplearning4nlp.html

機械学習におけるオンライン確率的最適化の理論
http://www.slideshare.net/trinmu/stochasticoptim2013
Practical recommendations for gradient-based training of deep architectures ~Benjio先生のおすすめレシピ~

http://www.slideshare.net/koji_matsuda/practical-recommendation-fordeeplearning

深層学習
http://sugiyama-www.cs.titech.ac.jp/ sugi/2007/Canon-MachineLearning30-jp.pdf
Pythonとdeep learningで手書き文字認識
http://www.slideshare.net/mokemokechicken/pythondeep-learning

29
パッケージまとめ
◎	
  	
  	
  pylearn2
h$p://deeplearning.net/soHware/pylearn2/

◎	
  	
  	
  deeplearning	
  Tutorial
h$p://deeplearning.net/tutorial/

◎	
  	
  	
  Torch7
h$p://torch.ch

◎	
  	
  	
  nolearn
h$ps://github.com/dnouri/nolearn

◎	
  	
  	
  deepnet
h'ps://github.com/niQshsrivastava/deepnet
◎	
  	
  	
  sugomiriさん

http://blog.yusugomori.com/post/42424440144/python-deep-learning-stacked-denoising

30

More Related Content

What's hot (20)

4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
Seiichi Uchida
 
密度比推定による時系列データの異常検知
密度比推定による時系列データの異常検知密度比推定による時系列データの異常検知
密度比推定による時系列データの異常検知
- Core Concept Technologies
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
Yuya Unno
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度
YukinoriKambe
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara
 
クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式
Hiroshi Nakagawa
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
Hiroshi Shimizu
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
Yohei Sato
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
Hiroshi Shimizu
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
coordinate descent 法について
coordinate descent 法についてcoordinate descent 法について
coordinate descent 法について
京都大学大学院情報学研究科数理工学専攻
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
Shohei Taniguchi
 
最適化計算の概要まとめ
最適化計算の概要まとめ最適化計算の概要まとめ
最適化計算の概要まとめ
Yuichiro MInato
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
AGIRobots
 
わかりやすいパターン認識_2章
わかりやすいパターン認識_2章わかりやすいパターン認識_2章
わかりやすいパターン認識_2章
weda654
 
3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
Junya Saito
 
4 データ間の距離と類似度
4 データ間の距離と類似度4 データ間の距離と類似度
4 データ間の距離と類似度
Seiichi Uchida
 
密度比推定による時系列データの異常検知
密度比推定による時系列データの異常検知密度比推定による時系列データの異常検知
密度比推定による時系列データの異常検知
- Core Concept Technologies
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
Yuya Unno
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度猫でも分かりたい線形回帰の自由度
猫でも分かりたい線形回帰の自由度
YukinoriKambe
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara
 
クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式
Hiroshi Nakagawa
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
Hiroshi Shimizu
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
Yohei Sato
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
Shohei Taniguchi
 
最適化計算の概要まとめ
最適化計算の概要まとめ最適化計算の概要まとめ
最適化計算の概要まとめ
Yuichiro MInato
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
AGIRobots
 
わかりやすいパターン認識_2章
わかりやすいパターン認識_2章わかりやすいパターン認識_2章
わかりやすいパターン認識_2章
weda654
 
3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
Junya Saito
 

Similar to 実装ディープラーニング (20)

「機械学習とは?」から始める Deep learning実践入門
「機械学習とは?」から始める Deep learning実践入門「機械学習とは?」から始める Deep learning実践入門
「機械学習とは?」から始める Deep learning実践入門
Hideto Masuoka
 
PythonによるDeep Learningの実装
PythonによるDeep Learningの実装PythonによるDeep Learningの実装
PythonによるDeep Learningの実装
Shinya Akiba
 
Hello deeplearning!
Hello deeplearning!Hello deeplearning!
Hello deeplearning!
T2C_
 
Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱
Junya Kamura
 
Akira shibata at developer summit 2016
Akira shibata at developer summit 2016Akira shibata at developer summit 2016
Akira shibata at developer summit 2016
Akira Shibata
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
Seiya Tokui
 
2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer
Keisuke Umezawa
 
深層学習入門
深層学習入門深層学習入門
深層学習入門
Danushka Bollegala
 
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
Kotaro Nakayama
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for Recommendation
Eduardo Gonzalez
 
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」 [旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
Yuki Arase
 
Gakusei lt
Gakusei ltGakusei lt
Gakusei lt
TomoyukiHirose2
 
20160329.dnn講演
20160329.dnn講演20160329.dnn講演
20160329.dnn講演
Hayaru SHOUNO
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
Seiya Tokui
 
20150930
2015093020150930
20150930
nlab_utokyo
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
Preferred Networks
 
tfug-kagoshima
tfug-kagoshimatfug-kagoshima
tfug-kagoshima
tak9029
 
Deep Learningの技術と未来
Deep Learningの技術と未来Deep Learningの技術と未来
Deep Learningの技術と未来
Seiya Tokui
 
dl-with-python01_handout
dl-with-python01_handoutdl-with-python01_handout
dl-with-python01_handout
Shin Asakawa
 
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」 [最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
Yuki Arase
 
「機械学習とは?」から始める Deep learning実践入門
「機械学習とは?」から始める Deep learning実践入門「機械学習とは?」から始める Deep learning実践入門
「機械学習とは?」から始める Deep learning実践入門
Hideto Masuoka
 
PythonによるDeep Learningの実装
PythonによるDeep Learningの実装PythonによるDeep Learningの実装
PythonによるDeep Learningの実装
Shinya Akiba
 
Hello deeplearning!
Hello deeplearning!Hello deeplearning!
Hello deeplearning!
T2C_
 
Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱
Junya Kamura
 
Akira shibata at developer summit 2016
Akira shibata at developer summit 2016Akira shibata at developer summit 2016
Akira shibata at developer summit 2016
Akira Shibata
 
Deep Learningの基礎と応用
Deep Learningの基礎と応用Deep Learningの基礎と応用
Deep Learningの基礎と応用
Seiya Tokui
 
2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer
Keisuke Umezawa
 
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
JSAI's AI Tool Introduction - Deep Learning, Pylearn2 and Torch7
Kotaro Nakayama
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for Recommendation
Eduardo Gonzalez
 
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」 [旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[旧版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
Yuki Arase
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
Seiya Tokui
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
Preferred Networks
 
tfug-kagoshima
tfug-kagoshimatfug-kagoshima
tfug-kagoshima
tak9029
 
Deep Learningの技術と未来
Deep Learningの技術と未来Deep Learningの技術と未来
Deep Learningの技術と未来
Seiya Tokui
 
dl-with-python01_handout
dl-with-python01_handoutdl-with-python01_handout
dl-with-python01_handout
Shin Asakawa
 
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」 [最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
[最新版] JSAI2018 チュートリアル「"深層学習時代の" ゼロから始める自然言語処理」
Yuki Arase
 

実装ディープラーニング