Data Analysis with Python and PySpark you own this product

'); $(document.body).append('
loading reading lists ...
'); function adjustReadingListIcon(isInReadingList){ $readingListToggle.toggleClass("fa-plus", !isInReadingList); $readingListToggle.toggleClass("fa-check", isInReadingList); var tooltipMessage = isInReadingList ? "edit in reading lists" : "add to reading list"; $readingListToggle.attr("title", tooltipMessage); $readingListToggle.attr("data-original-title", tooltipMessage); } $.ajax({ url: "/readingList/isInReadingList", data: { productId: 1276 } }).done(function (data) { adjustReadingListIcon(data && data.hasProductInReadingList); }).catch(function(e){ console.log(e); adjustReadingListIcon(false); }); $readingListToggle.on("click", function(){ if(codePromise == null){ showToast() } loadCode().then(function(store){ store.requestReadingListSpecificationForProduct({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId, title: window.readingListsServerVars.title }); ReadingLists.ReactDOM.render( ReadingLists.React.createElement(ReadingLists.ManningOnlineReadingListModal, { store: store, }), document.getElementById("reading-lists-modal") ); }).catch(function(e){ console.log("Error loading code reading list code"); }); }); var codePromise var readingListStore function loadCode(){ if(codePromise) { return codePromise } return codePromise = new Promise(function (resolve, reject){ $.getScript(window.readingListsServerVars.libraryLocation).done(function(){ hideToast() readingListStore = new ReadingLists.ReadingListStore( new ReadingLists.ReadingListProvider( new ReadingLists.ReadingListWebProvider( ReadingLists.SourceApp.marketplace, getDeploymentType() ) ) ); readingListStore.onReadingListChange(handleChange); readingListStore.onReadingListModalChange(handleChange); resolve(readingListStore); }).catch(function(){ hideToast(); console.log("Error downloading reading lists source"); $readingListToggle.css("display", "none"); reject(); }); }); } function handleChange(){ if(readingListStore != null) { adjustReadingListIcon(readingListStore.isInAtLeastOneReadingList({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId })); } } var $readingListToast = $("#reading-list-toast"); function showToast(){ $readingListToast.css("display", "flex"); setTimeout(function(){ $readingListToast.addClass("shown"); }, 16); } function hideToast(){ $readingListToast.removeClass("shown"); setTimeout(function(){ $readingListToast.css("display", "none"); }, 150); } function getDeploymentType(){ switch(window.readingListsServerVars.deploymentType){ case "development": case "test": return ReadingLists.DeploymentType.dev; case "qa": return ReadingLists.DeploymentType.qa; case "production": return ReadingLists.DeploymentType.prod; case "docker": return ReadingLists.DeploymentType.docker; default: console.error("Unknown deployment environment, defaulting to production"); return ReadingLists.DeploymentType.prod; } } }); } });
Jonathan Rioux
  • February 2022
  • ISBN 9781617297205
  • 456 pages
  • printed in black & white
  • Available translations: Russian, Simplified Chinese

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside
Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines.

In Data Analysis with Python and PySpark you will learn how to:

  • Manage your data as it scales across multiple machines
  • Scale up your data programs with full confidence
  • Read and write data to and from a variety of sources and formats
  • Deal with messy data with PySpark’s data manipulation functionality
  • Discover new data sets and perform exploratory data analysis
  • Build automated data pipelines that transform, summarize, and get insights from data
  • Troubleshoot common PySpark errors
  • Creating reliable long-running jobs

Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you’ve learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required.

about the technology

The Spark data processing engine is an amazing analytics factory: raw data comes in, insight comes out. PySpark wraps Spark’s core engine with a Python-based API. It helps simplify Spark’s steep learning curve and makes this powerful tool available to anyone working in the Python data ecosystem.

about the book

Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You’ll learn how to scale your processing capabilities across multiple machines while ingesting data from any source—whether that’s Hadoop clusters, cloud data storage, or local data files. Once you’ve covered the fundamentals, you’ll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code.

what's inside

  • Organizing your PySpark code
  • Managing your data, no matter the size
  • Scale up your data programs with full confidence
  • Troubleshooting common data pipeline problems
  • Creating reliable long-running jobs

about the reader

Written for data scientists and data engineers comfortable with Python.

about the author

As a ML director for a data-driven software company, Jonathan Rioux uses PySpark daily. He teaches the software to data scientists, engineers, and data-savvy business analysts.

A clear and in-depth introduction for truly tackling big data with Python.

Gustavo Patino, Oakland University William Beaumont School of Medicine

The perfect way to learn how to analyze and master huge datasets.

Gary Bake, Brambles

Covers both basic and more advanced topics of PySpark, with a good balance between theory and hands-on.

Philippe Van Bergenl, P² Consulting

For beginner to pro, a well-written book to help understand PySpark.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Data Analysis with Python and PySpark ebook for free

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Data Analysis with Python and PySpark ebook for free

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Data Analysis with Python and PySpark ebook for free
RECENTLY VIEWED