Python for Data Science and Machine Learning: Zero to Hero you own this product

'); $(document.body).append('
loading reading lists ...
'); function adjustReadingListIcon(isInReadingList){ $readingListToggle.toggleClass("fa-plus", !isInReadingList); $readingListToggle.toggleClass("fa-check", isInReadingList); var tooltipMessage = isInReadingList ? "edit in reading lists" : "add to reading list"; $readingListToggle.attr("title", tooltipMessage); $readingListToggle.attr("data-original-title", tooltipMessage); } $.ajax({ url: "/readingList/isInReadingList", data: { productId: 3201 } }).done(function (data) { adjustReadingListIcon(data && data.hasProductInReadingList); }).catch(function(e){ console.log(e); adjustReadingListIcon(false); }); $readingListToggle.on("click", function(){ if(codePromise == null){ showToast() } loadCode().then(function(store){ store.requestReadingListSpecificationForProduct({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId, title: window.readingListsServerVars.title }); ReadingLists.ReactDOM.render( ReadingLists.React.createElement(ReadingLists.ManningOnlineReadingListModal, { store: store, }), document.getElementById("reading-lists-modal") ); }).catch(function(e){ console.log("Error loading code reading list code"); }); }); var codePromise var readingListStore function loadCode(){ if(codePromise) { return codePromise } return codePromise = new Promise(function (resolve, reject){ $.getScript(window.readingListsServerVars.libraryLocation).done(function(){ hideToast() readingListStore = new ReadingLists.ReadingListStore( new ReadingLists.ReadingListProvider( new ReadingLists.ReadingListWebProvider( ReadingLists.SourceApp.marketplace, getDeploymentType() ) ) ); readingListStore.onReadingListChange(handleChange); readingListStore.onReadingListModalChange(handleChange); resolve(readingListStore); }).catch(function(){ hideToast(); console.log("Error downloading reading lists source"); $readingListToggle.css("display", "none"); reject(); }); }); } function handleChange(){ if(readingListStore != null) { adjustReadingListIcon(readingListStore.isInAtLeastOneReadingList({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId })); } } var $readingListToast = $("#reading-list-toast"); function showToast(){ $readingListToast.css("display", "flex"); setTimeout(function(){ $readingListToast.addClass("shown"); }, 16); } function hideToast(){ $readingListToast.removeClass("shown"); setTimeout(function(){ $readingListToast.css("display", "none"); }, 150); } function getDeploymentType(){ switch(window.readingListsServerVars.deploymentType){ case "development": case "test": return ReadingLists.DeploymentType.dev; case "qa": return ReadingLists.DeploymentType.qa; case "production": return ReadingLists.DeploymentType.prod; case "docker": return ReadingLists.DeploymentType.docker; default: console.error("Unknown deployment environment, defaulting to production"); return ReadingLists.DeploymentType.prod; } } }); } });
Learn Numpy, Pandas, Matplotlib, Scikit-Learn, Machine Learning, and more

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside

This A to Z course introduces newcomers to the world of data science and teaches the fundamental skills for using machine learning and artificial intelligence (AI) to glean meaning and insights from data.

It covers Python’s data types and shows how to use the must-have Python data science libraries, including Pandas for data analysis and Matplotlib for creating visuals of the results. Once you understand how to format and clean your data and perform exploratory data analysis, we move to the machine learning side. Here, we introduce you to supervised vs unsupervised learning, as well as the core algorithms, including simple and multiple linear regression. We finish up with a deep dive into a recommender system for movies, and a chance to put together all your new skills and knowledge.

Each topic is described in plain English, and the course does its best to avoid mathematical notations and jargon. Once you have access to the source code, you can experiment with it and improve upon it, learning and applying these algorithms in the real world.

The data science field is lucrative and growing. This course will introduce you to all the foundational skills that a data scientist must have. If you have no background in statistics, don't let that stop you from enrolling in this course!


Distributed by Manning Publications

This course was created independently by Meta Brains and is distributed by Manning through our exclusive liveVideo platform.

prerequisites

No prior programming or data science knowledge required

about the instructor

Meta Brains is a professional training brand developed by a team of software developers and finance professionals who have a passion for coding, finance, and Excel. They bring together both professional and educational experiences to create world-class training programs accessible to everyone. Currently, they're focused on the next great revolution in computing: The Metaverse. Their ultimate objective is to train the next generation of talent so we can code and build the metaverse together!

what's a liveVideo?
Find out more

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Python for Data Science and Machine Learning: Zero to Hero liveVideo for free
RECENTLY VIEWED