Causal Inference for Data Science you own this product

'); $(document.body).append('
loading reading lists ...
'); function adjustReadingListIcon(isInReadingList){ $readingListToggle.toggleClass("fa-plus", !isInReadingList); $readingListToggle.toggleClass("fa-check", isInReadingList); var tooltipMessage = isInReadingList ? "edit in reading lists" : "add to reading list"; $readingListToggle.attr("title", tooltipMessage); $readingListToggle.attr("data-original-title", tooltipMessage); } $.ajax({ url: "/readingList/isInReadingList", data: { productId: 2114 } }).done(function (data) { adjustReadingListIcon(data && data.hasProductInReadingList); }).catch(function(e){ console.log(e); adjustReadingListIcon(false); }); $readingListToggle.on("click", function(){ if(codePromise == null){ showToast() } loadCode().then(function(store){ store.requestReadingListSpecificationForProduct({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId, title: window.readingListsServerVars.title }); ReadingLists.ReactDOM.render( ReadingLists.React.createElement(ReadingLists.ManningOnlineReadingListModal, { store: store, }), document.getElementById("reading-lists-modal") ); }).catch(function(e){ console.log("Error loading code reading list code"); }); }); var codePromise var readingListStore function loadCode(){ if(codePromise) { return codePromise } return codePromise = new Promise(function (resolve, reject){ $.getScript(window.readingListsServerVars.libraryLocation).done(function(){ hideToast() readingListStore = new ReadingLists.ReadingListStore( new ReadingLists.ReadingListProvider( new ReadingLists.ReadingListWebProvider( ReadingLists.SourceApp.marketplace, getDeploymentType() ) ) ); readingListStore.onReadingListChange(handleChange); readingListStore.onReadingListModalChange(handleChange); resolve(readingListStore); }).catch(function(){ hideToast(); console.log("Error downloading reading lists source"); $readingListToggle.css("display", "none"); reject(); }); }); } function handleChange(){ if(readingListStore != null) { adjustReadingListIcon(readingListStore.isInAtLeastOneReadingList({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId })); } } var $readingListToast = $("#reading-list-toast"); function showToast(){ $readingListToast.css("display", "flex"); setTimeout(function(){ $readingListToast.addClass("shown"); }, 16); } function hideToast(){ $readingListToast.removeClass("shown"); setTimeout(function(){ $readingListToast.css("display", "none"); }, 150); } function getDeploymentType(){ switch(window.readingListsServerVars.deploymentType){ case "development": case "test": return ReadingLists.DeploymentType.dev; case "qa": return ReadingLists.DeploymentType.qa; case "production": return ReadingLists.DeploymentType.prod; case "docker": return ReadingLists.DeploymentType.docker; default: console.error("Unknown deployment environment, defaulting to production"); return ReadingLists.DeploymentType.prod; } } }); } });
Aleix Ruiz de Villa
  • December 2024
  • ISBN 9781633439658
  • 392 pages
  • printed in black & white

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


ePub + liveBook available Dec 30, 2024
Look inside
When you know the cause of an event, you can affect its outcome. This accessible introduction to causal inference shows you how to determine causality and estimate effects using statistics and machine learning.

A/B tests or randomized controlled trials are expensive and often unfeasible in a business environment. Causal Inference for Data Science reveals the techniques and methodologies you can use to identify causes from data, even when no experiment or test has been performed.

In Causal Inference for Data Science you will learn how to:

  • Model reality using causal graphs
  • Estimate causal effects using statistical and machine learning techniques
  • Determine when to use A/B tests, causal inference, and machine learning
  • Explain and assess objectives, assumptions, risks, and limitations
  • Determine if you have enough variables for your analysis

It’s possible to predict events without knowing what causes them. Understanding causality allows you both to make data-driven predictions and also intervene to affect the outcomes. Causal Inference for Data Science shows you how to build data science tools that can identify the root cause of trends and events. You’ll learn how to interpret historical data, understand customer behaviors, and empower management to apply optimal decisions.

about the technology

Why did you get a particular result? What would have lead to a different outcome? These are the essential questions of causal inference. This powerful methodology improves your decisions by connecting cause and effect—even when you can’t run experiments, A/B tests, or expensive controlled trials.

about the book

Causal Inference for Data Science introduces techniques to apply causal reasoning to ordinary business scenarios. And with this clearly-written, practical guide, you won’t need advanced statistics or high-level math to put causal inference into practice! By applying a simple approach based on Directed Acyclic Graphs (DAGs), you’ll learn to assess advertising performance, pick productive health treatments, deliver effective product pricing, and more.

what's inside

  • When to use A/B tests, causal inference, and ML
  • Assess objectives, assumptions, risks, and limitations
  • Apply causal inference to real business data

about the reader

For data scientists, ML engineers, and statisticians.

about the author

Aleix Ruiz de Villa Robert is a data scientist with a PhD in mathematical analysis from the Universitat Autònoma de Barcelona.

With intuitive explanations, application-focused insights, and real-world examples, this book offers immense practical value.

Philipp Bach, Maintainer of the DoubleML libraries for Python and R

An essential guide for navigating the complexities of real-world data analysis.

Adi Shavit, SWAPP

A must-read! Demystifies causal inference with a blend of theory and practice.

Karan Gupta, SunPower Corporation

Causal relationships can mask and distort results. This book provides a set of tools to extract insights correctly.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Causal Inference for Data Science ebook for free

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Causal Inference for Data Science ebook for free
RECENTLY VIEWED