SIGGRAPH2006 ãã¸ã¿ã«å¾®åå¹¾ä½
ACMã§ç»é²ãã¦ããã¨è²ã
ã¡ã¼ã«ãæ¥ãããã§ããï¼ãã¾ã«ã¯é¢ç½ããã®ãããã¾ãï¼
ä»å¹´ã®SIGGRAPHã®ã¬ã¯ãã£ã¼ã§ï¼ãããªã®ããã£ãããã§ãï¼
Discrete Differential Geometry: An Applied Introduction
Chapter 1: Introduction to Discrete Differential Geometry: The Geometry of Plane Curves........................1
Eitan Grinspun and Adrian Secord
Chapter 2: What can we measure?...............................................................................................................5
Peter Schroder
Chapter 3: Curvature measures for discrete surfaces..................................................................................10
John M . Sullivan
Chapter 4: A discrete model for thin shells................................................................................................14
Eitan Grinspun
Chapter 5: Discrete Quadratic Curvature Energies.....................................................................................20
Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun
Chapter 6: Straightest Geodesics on Polyhedral Surface............................................................................30
Konrad Polthier and Markus Schmies
Chapter 7: Discrete Differential Forms for Computational Modeling.........................................................39
Mathieu Desbrun, Eva Kanso, and Yiying Tong
Chapter 8: Building Your Own DEC at Home...........................................................................................55
Sharif Elcott and Peter Schroder
Chapter 9: Stable, Circulation-Preserving, Simplicial Fluids.....................................................................60
Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schroder, and Mathieu Desbrun
Chapter 10: An Algorithm for the Construction of Intrinsic Delaunay Triangulations
with Applications to Digital Geometry Processing....................................................................................69
Matthew Fisher, Boris Springborn, Alexander I. Bobenko, Peter Schroder
Chapter 11: Discrete Geometric Mechanics for Variational Time Integrators............................................75
Ari Stern and Mathieu Desbrun
ããï¼å¹¾ä½å¦ã®ã¨ã¦ãè¯ãã¬ã¯ãã£ã¼ã«ãªã£ã¦ã¾ãï¼å¹¾ä½å¦ã§è¨ãæ²çããã¢ãã¸ã¼ã®æ¦å¿µã¯ï¼ç©ºéãé¢æ£åãã¦å®ç¾©ãã¦ï¼é¢æ£åå¹ ãâ1/âã«ããã¨åãããããï¼ã¨ãããï¼å ã ï¼ãããå®ç¾©ï¼ãªã®ã§ï¼é£ç¶çãªå¹¾ä½å¦ãé¢æ£çãªå¤è§å½¢ã§æ±ã£ã¦ãããã®è«æéã¯ã¨ã¦ãè¯ãã§ãï¼
ããã«æ³¨ç®ãã¹ãã¯ï¼10ç« ï¼
ãVariational Time Integratorsï¼å¤åæéç©åï¼ãã§ç´¹ä»ããã¦ããã®ã¯ï¼ãã®ã·ã³ãã¬ã¯ãã£ãã¯æ°å¤ç©åæ³ã§ãï¼
Haier,Lubich,Wannerã®ãGeometric Numerical Integrationãã®å³ãå
¥ã£ã¦ã¾ãï¼
ã¤ãã«ã³ã³ãã¥ã¼ã¿ã»ã°ã©ãã£ãã¯ã¹ã®ä¼è°ã§Symplectic Integratorãç´¹ä»ãããã®ã¯å¬ããã®ã§ããï¼ãã¤ã¦SIGGRAPHã§çºè¡¨ããSymplectic Raytracingã¯ãã¡ããï¼å½ç«å¤©æå°ã®åç°æ¥å¤«æ°ãæ±äº¬çç§å¤§é´æ¨å¢éæ°ã®è«æãå
¨ãå¼ç¨ããã¦ãã¾ããï¼CGã®ã¬ã¯ãã£ã¼ãªã®ã§æ°å¤ç©åæ³ã®è«æã¾ã§å¼ç¨ããå¿
è¦ã¯ç¡ãã¨ã¯æãã¾ããï¼é¢æ£å¾®åå¹¾ä½ã§ã¯æ¥æ¬ã§ãåè大ã®äºå®®æ·³æ°ã2006å¹´ãSIGGRAPHã«è¡ã£ãæ±å¤§ã®æåååæ°çï¼èåãªäººãããããã®ã«å
¨ã触ãããã¦ããªãã®ãï¼ã¡ãã£ã¨æ®å¿µã§ãï¼