ããã«ã¡ã¯ï¼ æè¡é¨æ©æ¢°å¦ç¿ã°ã«ã¼ãã®å±±å£ (@altescy) ã§ãã
å æãç¥æ¸ã«ã¦éå¬ãããè¨èªå¦çå¦ä¼ç¬¬30åå¹´æ¬¡å¤§ä¼ (NLP2024)ã«åããæ©æ¢°å¦ç¿ã°ã«ã¼ãã®æ·±æ¾¤ (@fufufukakaka)ã¨å ±ã«åå ãã¦ãã¾ããã æ¨å¹´ã«å¼ãç¶ãä»å¹´ãé廿å¤ã®åå è æ°ã¨ãªããè¨èªå¦çç ç©¶ã®çãä¸ããã宿ãã¾ããã
ç¹ã«å»å¹´ã®å¹´æ¬¡å¤§ä¼ (NLP2023) ã®ã¿ã¤ãã³ã°ã§ GPT-4 ãçºè¡¨ããã¦ä»¥éãèªç¶è¨èªå¦çã®ç ç©¶ã¯å¤§ããªè»¢ææãè¿ãã¦ããã¨æãã¾ãã å¤§è¦æ¨¡è¨èªã¢ãã« (LLM) ãç ç©¶ã®ä¸»æµã¨ãªãä¸ãã©ããªèª²é¡ãçºè¦ãããã®ããæå¾ ããã£ã¦åå ãã大ä¼ã¨ãªãã¾ããã
ãã®è¨äºã§ã¯ NLP2024 ã«ã¦ã¯ãã¯ãããããçºè¡¨ãã 2 ã¤ã®ç ç©¶ã¨ããã®ä»ã®è峿·±ãã£ãç ç©¶ã«ã¤ãã¦ããã¤ãç´¹ä»ãã¾ãã
çºè¡¨å 容ã®ç´¹ä»
ã¯ãã¯ãããããã¯ä»¥ä¸ 2 ã¤ã®ç ç©¶ãçºè¡¨ãã¾ããã
- P2-11: Sequential Recommendation ã«ãããããã¹ãæ å ±ãæ´»ç¨ããæªç¥ã¢ã¤ãã ã¸ã®å¯¾å¦æ³ã«é¢ããåæ
- P3-8: RecipeSTS: ã¬ã·ãã®ããã®é¡ä¼¼æ§è©ä¾¡
P2-11: Sequential Recommendation ã«ãããããã¹ãæ å ±ãæ´»ç¨ããæªç¥ã¢ã¤ãã ã¸ã®å¯¾å¦æ³ã«é¢ããåæ
- èè : æ·±æ¾¤ç¥æ´ã山壿³°å¼
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P2-11.pdf
æ¨è¦ã¢ãã«ã®ä¸ç¨®ã¨ãã¦ãSequential Recommendation Modelãããã¾ããããã¯ã¢ã¤ãã IDã®ç³»åæ å ±ãåºã«æ¬¡ã«ã¢ã¯ã·ã§ã³ãã¹ãã¢ã¤ãã ãæ¨è¦ããã¢ãã«ã§ãããã®ã¢ãã«ã¯æªç¥ã®ã¦ã¼ã¶ã¼ã§ãã£ã¦ããæ¢ç¥ã®ã¢ã¤ãã ã§æ§æãããå±¥æ´ãããã°æ¨è¦ãå¯è½ã§ããããããæªç¥ã®ã¢ã¤ãã ãå ¥åã¨ãã¦ä¸ããããå ´åããã®ã¢ã¤ãã ã¯ã¢ãã«ã«ã¨ã£ã¦out-of-vocabularyã§ãããå ¥åã«ä½¿ç¨ãããã¨ã¯ã§ãã¾ãããå®éã®ãµã¼ãã¹ã§æ¨è¦ã¢ãã«ãéç¨ããä¸ã§ã¯ãå¦ç¿æã«åå¨ããªãã£ãæ°çã¢ã¤ãã ãç¡è¦ããããå¾ãªãã§ãããä»®ã«ããããã¢ã¤ãã ã ããè¦ã¦ããã¦ã¼ã¶ãããã¨ããã¨ããã®ã¦ã¼ã¶ã«ã¯æ¨è¦ã表åºã§ãã¾ããã ãã®ç ç©¶ã§ã¯ãæªç¥ã®ã¢ã¤ãã ãå ¥åãããéã«æã广çã«ãããåãæ±ãæ¹æ³ãæ¤è¨ãã¾ããã
æ¬ç ç©¶ã§ã¯ã¯ãã¯ãããã«ãããå®éã®é²è¦§å±¥æ´ãã¼ã¿ãåã³NII IDRã§å ¬éãã¦ããã¤ããã½ãã¼ã¿ã»ããã使ç¨ãã¾ãããSequential Recommendation Modelã¨ãã¦ã¯ã2021å¹´SIGIRã§çºè¡¨ãããCOREã使ç¨ãã¾ãã
ä»åãæªç¥ã¢ã¤ãã ãåãæ±ãæ¹æ³ã¨ãã¦3ã¤ã®ææ³ãææ¡ãã¾ããã
- ããã¹ãæ
å ±ãç¨ããæªç¥ã¢ã¤ãã ã®IDåãè¾¼ã¿æ¨æ¸¬(Embedding Mapping)
- æªç¥ã¢ã¤ãã ãæã¤æ å ±ã¨ãã¦ããã¹ãæ å ±(æ¬ç ç©¶ã§ã¯ã¬ã·ãã¿ã¤ãã«)ã使ç¨ãã¾ãã
- äºãå¦ç¿ãããæ¨è¦ã¢ãã«ã®IDåãè¾¼ã¿ã¨ã¢ã¤ãã ã®ããã¹ãæ å ±ã対ã«ãã¦ãããã¹ãæ å ±ããIDåãè¾¼ã¿ãæ¨å®ããã¢ãã«ãå¦ç¿ãã¾ãã
- æªç¥ã¢ã¤ãã ãå ¥åãããéã«ã¯ããã®ã¢ã¤ãã ã®ããã¹ãæ å ±ãç¨ãã¦IDåãè¾¼ã¿ãæ¨å®ãããã®IDåãè¾¼ã¿ãç¨ãã¦æ¨è¦ãè¡ãã¾ãã
- ãã®ææ³ã®æ§ç¯ã«ã¯BERTåã³LSTMã使ç¨ãã¾ããã
- é¡ä¼¼åº¦ãé«ãã¢ã¤ãã ã«ããç½®æ(Replace Similar Item)
- æªç¥ã¢ã¤ãã ãå ¥åãããéã«ããã®ã¢ã¤ãã ã¨ããã¹ãã®é¡ä¼¼åº¦ãé«ãæ¢ç¥ã¢ã¤ãã ãå ¥åå±¥æ´ããæ¢ãåºãããã®ã¢ã¤ãã ãæªç¥ã¢ã¤ãã ã®ä»£ããã«å ¥åã¨ãã¦ä½¿ç¨ãã¾ãã
- æªç¥ã¢ã¤ãã ãå
¥åå±¥æ´ããé¤å¤(Ignore)
- æªç¥ã¢ã¤ãã ãå ¥åãããéã«ããã®ã¢ã¤ãã ãå ¥åå±¥æ´ããé¤å¤ããæ®ãã®ã¢ã¤ãã ã®ã¿ã使ç¨ãã¦æ¨è¦ãè¡ãã¾ãã
å±¥æ´ã®å é ã¾ãã¯æ«å°¾ããæå¤§5ã¤ãæªç¥ã¢ã¤ãã ã§ããã¨ä»®å®ãã¾ããæªç¥ã¢ã¤ãã ã¨ãªã£ããã®ã«ã¤ãã¦ã¯ãæ¨è¦ã¢ãã«ãã対象ã®IDåãè¾¼ã¿ãåé¤ãã¦å ¥åã«å©ç¨ã§ããªãããã«ãã¾ãã
以ä¸ãå®é¨çµæã¨ãªãã¾ããããããã®ãã¼ã¿ã»ããã«å¯¾ãã¦ãåææ³ãé©ç¨ããéã®NDCG@50ã®çµæã§ãã

ã¾ãåããåºæ¬çãªãã¨ã¨ãã¦ãå±¥æ´ã®å é å´ãããæ«å°¾å´(ããæè¿ã®ã¢ã¤ãã )ãæªç¥ã§ããå ´åã®æ¹ã精度影é¿ã大ãããã¨ãè¦ã¦åãã¾ããåææ³ã«é¢ããçµæã¨ãã¦ã¯ãä»åææ¡ããææ³ã§ãã Embedding Mapping ã仿æ³ã¨æ¯ã¹ã¦ååãªç²¾åº¦ãåºãã«ã¯è³ãããå¤ãã®å ´åã§ã·ã³ãã«ãªå¥ææ³ãä¸åãçµæã¨ãªãã¾ãããä»å対象ã¨ããç³»åã10è¦ç´ 以ä¸ã®ãã®ã®ã¿ã対象ã¨ãã¦ãããã¨ããããåç´ã«æªç¥ã¢ã¤ãã ãé¤å¤ãã Ignore ãã»ã¨ãã©ã®ã±ã¼ã¹ã§æãè¯ãæ§è½ã示ãã¾ããããã ãé²è¦§ãã¼ã¿ã»ã¤ããã½ãã¼ã¿ã®ã©ã¡ãã対象ã¨ãã¦ãããã«ãã£ã¦è¥å¹²çµæã¯ç°ãªã£ã¦ãããé¡ä¼¼ã¢ã¤ãã ã並ã³ãããé²è¦§ãã¼ã¿ã«å¯¾ãã¦ã¯ Replace Similar Item ãæå¹ã«åãå ´é¢ãããã¾ããã
ãã®çµæã«é¢é£ãã¦ä»¥ä¸ã®ãããªåæãè¡ãã¾ããã äºåã«ã¬ã·ãããã¹ãã§å¦ç¿ãããfastTextãã¯ãã«ã§ã³ãµã¤ã³é¡ä¼¼åº¦ã0.8以ä¸ã¨ãªãã¿ã¤ãã«é¡ä¼¼ãã¢ã100çµæ½åºãã¾ãããã®å¾ãEmbedding Mappingï¼LSTMï¼ã¨COREã®IDåãè¾¼ã¿ãã¯ãã«ã使ã£ã¦ãã¢ã®ã³ãµã¤ã³é¡ä¼¼åº¦ãè¨ç®ãããã®å¹³åãç®åºãã¾ããã

ãã®çµæãè¦ãã¨ãæ¬æ¥è¿ã¥ãããã£ã Embedding Mapping(LSTM) 㨠CORE ã¨ã®éã§å ¨ãç°ãªãå¾åãè¦ããã¦ãã¾ããfastTextãã¯ãã«ã®é¡ä¼¼åº¦ãé«ãã¬ã·ãå士ã§ãã£ã¦ããCORE ã®IDåãè¾¼ã¿ã®é¡ä¼¼åº¦ã¯æ¯è¼çä½ãã§ãããã¨ããããã¾ããã ãã®ãã¨ãããä»åææ¡ãã Embedding Mapping ã§ã¯æããããªãæ§è³ªã CORE ã® IDåãè¾¼ã¿ã«åãã£ã¦ãããã¨ãèãããã¾ããIDåãè¾¼ã¿ã復å ããããã«å¦ç¿ãããã¨ã§æ§è³ªãç²å¾ã§ããªãããã¨èãã¦åãæãã£ãã®ã§ããã¾ã æ¹åã§ããç¹ãããããã§ããã
Sequential Recommendation Model ã¯ãªã³ã©ã¤ã³æ¨è¦ãå®è£ ããä¸ã§é常ã«éè¦ãªé¸æè¢ã®ä¸ã¤ã§ãã䏿¹ã§å®ãµã¼ãã¹ã§ã®éç¨ãèããã¨ãã¢ãã«å¦ç¿å¾ã«ç»é²ãããæ°çã¢ã¤ãã ãä¸æãæ¨è«ã«å©ç¨ã§ããããã«ãªãã°ãä»ã¾ã§ä»¥ä¸ã«ã¦ã¼ã¶ã®è¡åãæããããããã«ãªãã¯ãã§ãã ä»å¾ã®ç ç©¶ã§ã¯ãããåºããã©ã¡ã¼ã¿è¨å®ã®ã§å®é¨ãè¡ãã¨å ±ã«ããè¯ã IDåãè¾¼ã¿ã®æ¨å®æ¹æ³ã模索ãããªã©ã«åªãã¦ããããã¨æãã¾ãã
P3-8: RecipeSTS: ã¬ã·ãã®ããã®é¡ä¼¼æ§è©ä¾¡
- èè : 山壿³°å¼ãæ·±æ¾¤ç¥æ´ãåå³¶ç´
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P3-8.pdf
ã¬ã·ãã¯èªç¶è¨èªã§æ¸ãããææ¸å½¢æ ã®ä¸ç¨®ã§ãããã®ã®ãé常ã®ããã¹ãã¨ã¯ç°ãªãç¹å¾´ãæã£ã¦ããããæ¢åã®ãã¼ã¿ã»ããã§è©ä¾¡ãããåºç¤ã¢ãã«ãã¬ã·ããä¸æãæ±ãããã©ããã¯å®ãã§ã¯ããã¾ããã ãã®ç ç©¶ã§ã¯è¨èªã¢ãã«ã®ã¬ã·ãå¦çè½åãçè§£ããããã®ç¬¬ä¸æ©ã¨ãã¦ãã¬ã·ãã¿ã¤ãã«ã対象ã«ãã STS (Semantic Textual Similarity) ãã¼ã¿ã»ãããæ§ç¯ããæ¢åã®è¨èªã¢ãã«ã®è©ä¾¡ã¨ä»å¾ã®ç ç©¶æ¹éã示ãã¾ããã
ãã¼ã¿ã»ããã®ä½æã«ããã£ã¦ã¯ã2ã¤ã®ç°ãªãã¬ã·ãã¿ã¤ãã«ã®ãã¢ã«å¯¾ãã¦ä»¥ä¸ã®ã¢ããã¼ã·ã§ã³åºæºã«åºã¥ã人æã«ããã¢ããã¼ã·ã§ã³ã宿½ãã¾ããã 500ä»¶ã®ãã¢ã«ã¤ãã¦ã1ãã¢ããã 5 人ã®ä½æ¥è ã 0 ~ 5 ã®ã¹ã³ã¢ãä»ä¸ãããã®å¹³åå¤ãæ£è§£ã®ã¹ã³ã¢ã¨ãã¦æ¡ç¨ãã¾ããã

使ãã RecipeSTS ãã¼ã¿ã»ãããç¨ãã¦è¨èªã¢ãã« (BERT / T5) ã®æ§è½ãè©ä¾¡ããçµæã以ä¸ã®å³ã«ãªãã¾ãã
åè¨èªã¢ãã«ãã使ããã¬ã·ãã¿ã¤ãã«ã®åãè¾¼ã¿è¡¨ç¾ã®ã³ãµã¤ã³é¡ä¼¼åº¦ã¨ãã¢ããã¼ã·ã§ã³ãããã¹ã³ã¢ã®ã¹ãã¢ãã³é ä½ç¸é¢ä¿æ°ã示ãã¦ãã¾ãã
ã¾ãã+ fine-tuning ã¯äºåå¦ç¿æ¸ã¿ã¢ãã«ã«å¯¾ãã¦ç¬èªã®ã¬ã·ããã¼ã¿ã§è¿½å å¦ç¿ããã¢ãã«ã表ãã¦ãã¾ãã

ä»å試ããä¸ã§æãé«ãæ§è½ã示ããã®ã¯ã¬ã·ããã¼ã¿ã§è¿½å å¦ç¿ãã BERT ã¢ãã«ã§ããã åããã¦è©ä¾¡ãè¡ã£ã JSTS ã®çµæã¨æ¯ã¹ãã¨ãæ¢åã®è¨èªã¢ãã«ã¯ä¸è¬çãªããã¹ãã«æ¯ã¹ã¦ã¬ã·ãããã¹ãã®å¦çã¯ä¸å¾æãªå¾åãããããã«è¦ãã¾ãã
ã¾ãã追å ã§ OpenAI Embedding API ã使ã£ãè©ä¾¡ãä¸å³ä¸é¨ã«è¨è¼ãã¾ããã è«æå·çæç¹ã§ã¯ text-embedding-3 ã®å ¬éåã§ãã£ããã追å å¦ç¿ããã¢ãã«ãæãé«ãæ§è½ã示ãã¦ãã¾ããããtext-embedding-3-large ã¯ä»åæ¯è¼ããã¢ãã«ã®ä¸ã§æé«æ§è½ãéæãã¦ãã¾ãã ããã§ããã¯ã JSTS ã®çµæã¨æ¯ã¹ãã¨ã¬ã·ãããã¹ããä¸å¾æã¨ããå¾åã¯ããããã§ãã¬ã·ãå¦çã«ããã課é¡ã¯ä¾ç¶ã¨ãã¦æ®ããã¦ããã¨è¨ããã§ãããã

ããã¤ãã®äºä¾ãããã¯ã¢ãããã¦ã¿ãã¨ãä¸å³ã® (a)ã(b)ã(d) ã®ããã«è¡¨å±¤çãªé¡ä¼¼ã»ç¸éã®å½±é¿ã§æå³çãªé¡ä¼¼æ§ãæãããã¦ããªãã±ã¼ã¹ãè¤æ°åå¨ãã¾ããã ã¾ããäºä¾ (c) ã¯ã©ã¡ããããªã¤ã¹ã¿ã¼çããã§ãããã®ã®ãèª¿çæ³ã飿ãªã©çç®ãã観ç¹ã«ãã£ã¦é¡ä¼¼æ§ã®è©ä¾¡ãå¤åããã±ã¼ã¹ã¨èãããã¾ãã ã¬ã·ãã®é¡ä¼¼æ§è©ä¾¡ã«ããã¦ã¯ãããå¤é¢çãªåºæºãå¿ è¦ã«ãªãããã§ãã
é¡ä¼¼æ§è©ä¾¡ã¯ã¢ãã«é¸æãªã©æ©æ¢°å¦ç¿ã¿ã¹ã¯ã®åºç¤ã®ã¿ã§ãªããæ¤ç´¢ãæ¨è¦ã¨ãã£ãå¿ç¨ã«ããã¦ãéè¦ãªè¦ç´ ã§ãã ä»å¾ã®ç ç©¶ã§ã¯ãèª¿çæ³ã»é£æã»å³ä»ãã¨ãã£ãããã¬ã·ãã«ç¹åããå¤é¢çãªåºæºã«åºã¥ããã¼ã¿ã»ããã®æ§ç¯ããã¬ã·ãã«é©ããåºç¤ã¢ãã«ã®éçºã«åãçµã¿ããã¨èãã¦ãã¾ãã
æ°ã«ãªã£ãçºè¡¨
以ä¸ã¯ NLP2024 ã§çºè¡¨ãããç ç©¶ã®ä¸ãããå±±å£ã»æ·±æ¾¤ãç¹ã«è峿·±ãã£ããã®ãããã¯ã¢ãããã¦ç´¹ä»ãã¾ãã
A4-3: LLM ã®åºåçµæã«å¯¾ãã人éã«ããè©ä¾¡åæã¨GPT-4 ã«ããèªåè©ä¾¡ã¨ã®æ¯è¼åæ
- ç´¹ä»: å±±å£
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A4-3.pdf
é¡ã®éããLLMã®åºåçµæã人éãGPT-4ã§è©ä¾¡ããçµæãæ¯è¼åæããã¨ããç ç©¶ã§ãã
GPT3.5-turbo-1106 (GPT-3.5) 㨠houou-instruction-7b-v2 (houou) ã対象ã«ãRakuda ãã³ããã¼ã¯ãç¨ãã¦ããããã®å¿çã«ã¤ãã¦é¢é£æ§ã»æ£ç¢ºæ§ãªã©è¤æ°ã®è¦³ç¹ã§è©ä¾¡ãè¡ã£ã¦ãã¾ãã
å®é¨ã®çµæã人éã¨GPT-4ã®å¤æã«ã¯ä¹é¢ããããGPT-4 㯠houou ã®æ¹ãåªãã¦ããã¨è©ä¾¡ãã䏿¹ã人é㯠GPT-3.5 ã®æ¹ãåªãã¦ããã¨è©ä¾¡ããã±ã¼ã¹ãå¤ãã£ãã¨ã®ãã¨ã§ãã
houou ã¯å ·ä½çãªæ°å¤ãæ å ±ãå«ãå¿çãçæããå¾åãããããããGPT-4 ã¯ããããæ å ±ã®å ·ä½æ§ãè©ä¾¡ããã¨èãããã¦ãã¾ãã ãããã人éãäºå®ç¢ºèªãå«ã㦠houou ãè©ä¾¡ããã¨ããããã«ã·ãã¼ã·ã§ã³ãå¤ããç¹ã«æ£ç¢ºæ§ã®ç¹ã§å£ã£ã¦ããã¨å¤æãããããã§ãã houou ã®å¦ç¿ã«å©ç¨ããã ichikara-instruction ãã¼ã¿ã»ããã¯å ·ä½çãªæ å ±ãå«ãä¾ãå¤ãããã®å¾åã houou ã®åºåã«ãåæ ããã¦ããã¨èãããã¦ãã¾ãã
ãã®ç ç©¶ãè¦ãã¨ãLLMãè©ä¾¡ã«å©ç¨ãããã¨ãã¤ã³ã¹ãã©ã¯ã·ã§ã³ãã¼ã¿ã»ãããè¨è¨ã»æ§ç¯ããé£ãããæãã¾ãã æ å ±ã®å ·ä½æ§ã¨æ£ç¢ºæ§ã®ãã¬ã¼ããªãã«ã¤ãã¦ç¤ºåãå¾ãããè峿·±ãçºè¡¨ã§ããã
P6-25: èªå·±èªç¥ã¯ LM as KB ã®ä¿¡é ¼æ§ãé«ããã
- ç´¹ä»: å±±å£
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P6-25.pdf
çå½å¤ã§åçå¯è½ãªQAã¿ã¹ã¯ (StrategyQA) ã対象ã«ãäºæ¸¬ã®ä¸ç¢ºå®æ§ãèæ ®ãã¦å¿çãè¡ãä»çµã¿ãææ¡ããç ç©¶ã§ãã äºæ¸¬ãä¸ç¢ºå®ãªå ´åã¯è³ªåãç価ãªå½é¡éåã»è«çå¼ã¸ã¨å帰çã«åå²ããããããã®å½é¡ã«å¯¾ãã¦åçãå¾ããã¨ã§ä¸ãããã質åã«çããã¨ããææ³ (Back-off LMKB) ãææ¡ãã¦ãã¾ãã ä¸ç¢ºå®æ§ãèæ ®ããªãå ´åãéæ¥è¨¼æããªãå ´åã¨æ¯ã¹ã¦ãææ¡ææ³ãç¨ãããã¨ã§ããæ£ç¢ºãªåçãå¾ããããã¨ã示ãã¦ãã¾ãã
å¿çãçå½å¤ã§ãããã¨ãå©ç¨ãã¦è³ªåãè«çå¼ã«åè§£ããã¨ããçºæ³ã¯åççã§è峿·±ãã¨æãã¾ããã æåã®åçã§çå½ä¸æã ã£ã質åã«ããã¦ãéæ¥è¨¼æã«ããæ£ç¢ºãªåçãå¾ããã¦ãã¦ãææ¡ææ³ã®æå¹æ§ã示ããã¦ãã¾ãã 䏿¹ã課é¡ã«ãæ¸ããã¦ããããã«ä¸ç¢ºå®æ§ã®æ¨å®ãå½é¡éåã®çæç²¾åº¦ã«ã¤ãã¦ã¯ä»å¾ã®çºå±ãæå¾ ããã¾ãã
å人çã«èªå·±èªç¥çãªã¢ããã¼ã㯠LLM ãã¯ããã¨ãã AI ã·ã¹ãã ã®è½ååä¸ã«ã¤ãªããã®ã§ã¯ãªããã¨æå¾ ãã¦ãã¾ãã ã¢ãã«èªèº«ãåºåãå帰çã«æ¤è¨¼ããã¨ããä»çµã¿ã¯ãä»ã®ã¿ã¹ã¯ã«ãé©ç¨ã§ããå¯è½æ§ãããã¨æãã¾ããã
P10-6: äºåå¦ç¿æ¸ã¿ã®åæ£è¡¨ç¾ã¯è¡¨å±¤çãªç¥èãç²å¾ãã¦ããã
- ç´¹ä»: å±±å£
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P10-6.pdf
ç¾å¨ã® LLMãä¾ãã° GPT-3.5 ã§ã¯ ãã人é¡å¦è ãã® 3 æåç®ã¯ä½ã§ããï¼ãã¨ãã£ã表層ã«é¢é¢ãã質åã«æ£ããåçã§ããªãå ´åãå¤ãããã¾ãã ãã®ç ç©¶ã§ã¯Word2Vecã»BERTã»T5ã»Llama2 ãªã©è¤æ°ã®å¦ç¿æ¸ã¿ã®è¨èªã¢ãã«ã対象ã«ãåæ£è¡¨ç¾ãçæçµæãç¨ãã¦ã¢ãã«ã«è¡¨å±¤çãªæ å ±ãã©ã®ç¨åº¦å«ã¾ãã¦ãããã調æ»ãã¦ãã¾ãã æåæ°ãæ§ææåã®äºæ¸¬ã¨ãã£ãã¿ã¹ã¯ãéãã¦ãå¦ç¿æ¸ã¿è¨èªã¢ãã«ãè¡¨å±¤ã®æ å ±ãé¨åçã«ã¯ç²å¾ãã¦ãããã®ã®ãåºåã«è¡¨å±¤ã®ç¥èãåæ ããããã¨ãä¸å¾æã§ãã£ãããåºç¾ä½ç½®ãé åºã®æ å ±ã¯ååç²å¾ã§ãã¦ããªããã¨ã示ããã¦ãã¾ãã
ç¹ã«è峿·±ãã£ãã®ã¯ãæåæ°ãäºæ¸¬ããã¿ã¹ã¯ã«ããã¦åæ£è¡¨ç¾ããäºæ¸¬ããå ´åã¨ããã¹ãçæã§äºæ¸¬ããå ´åã®æ§è½ã®å·®ã§ãã BERT ã Llama2 ã«ããã¦ãåæ£è¡¨ç¾ãå©ç¨ããå ´åã«ã¯ããç¨åº¦äºæ¸¬ã§ãã¦ãããã®ã®ãããã¹ãçæã§äºæ¸¬ããå ´åã«ã¯ãã®æ§è½ã大ããä½ä¸ããã¨ã®ãã¨ã§ãã ã¢ãã«ã®å é¨ã«è¡¨å±¤ã®æ å ±ãç²å¾ã§ããã¨ãã¦ããåºåã®ã¡ã«ããºã ã«ãã£ã¦ãããåæ ã§ãã¦ããªãå¯è½æ§ãããããã§ãã
æåæ°å¶éã®ããè¦ç´ãªã©ãã¿ã¹ã¯ã«ãã£ã¦ã¯è¡¨å±¤ã®æ å ±ãéè¦ã«ãªãå ´åãããã¯ãã§ãã è¨èªã¢ãã«ã®æ¯ãèããè½åãçè§£ããããã«ã¯ãæå³çãªè©ä¾¡ã¨åããã¦è¡¨å±¤ã®æ å ±ãæ±ãè½åã«ã¤ãã¦èãããã¨ã大åã ã¨æãã¾ããã
A10-4: å¹³åãã¼ãªã³ã°ã«ããæåãè¾¼ã¿ã®åæ¤è¨: å¹³åã¯ç¹ç¾¤ã®è¦ç´ã¨ãã¦ååã?
- ç´¹ä»: 深澤
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A10-4.pdf
æç« ãªã©ããã¯ãã«åãããã¨ã¯è¿å¹´ã®æ¤ç´¢æ¡å¼µçæ(RAG) ãªã©ãå®è£ ããä¸ã§å¿ è¦ä¸å¯æ¬ ãªæè¡ã¨ãã¦èªèããã¦ãã¦ãã¾ãããã¡ãã®ç ç©¶ã§ã¯æåãè¾¼ã¿ãä½ãéã«æãããç¨ããããå¹³åãã¼ãªã³ã°ããåèªåãè¾¼ã¿ã®ç©ºéçãªåºããã®æ å ±ãæ½°ãã¦ãã¾ãåé¡ãææãã¦ãã¾ããã¤ã¾ãããæå³ã®ç°ãªãç¹ç¾¤ãªã®ã«å¹³åãè¿ããªããã¨ããåé¡ã§ãã ããã確ãããããã®å®é¨ã¨ãã¦ãWMD(Word Mover's Distance) ã«ããç¹ç¾¤ã¨ãã¦ã®é¡ä¼¼åº¦ã¨å¹³åãã¼ãªã³ã°å¾ã®L2è·é¢ã人æè©ä¾¡ã«ããé¡ä¼¼åº¦ãç¨æããããããã®é¡ä¼¼åº¦ãæ¯è¼ãã¦ãã¾ããçµæã¨ãã¦ãWMDã«ããé¡ä¼¼åº¦ãä½ãå ´åã«å¹³åãã¼ãªã³ã°å¾ã®L2è·é¢ãé«ãã±ã¼ã¹ãããã¤ãåå¨ãã¦ãããã¨ã確èªã§ããã¨ã®ãã¨ã§ãããã®çµæã¯çµé¨çã«å¹³åãã¼ãªã³ã°ãæå¹ã§ãããã¨ã示ãã¦ãã¾ãããåæã«èæ ®ããªããã°ãªããªãã±ã¼ã¹ãæããã¨ã示ãã¦ãã¾ãã
ç¹ç¾¤ãç¹ç¾¤ã®ã¾ã¾æãããããªã¼ãºããã«ãªã¢ãã«ãç¨æã§ããã°ããã®ã§ãããåºæ¬çã«ç¹ã¨ãã¦å§ç¸®ããã¦ããå¹³åãã¼ãªã³ã°ã®æ¹ãç¾æç¹ã§ã¯ãã¯ãæ±ããããã§ãããã ãå人çã«ãå¹³åãã¼ãªã³ã°ã¨ããæä½ãè¨èã®æå³ãæ£ããæãããã¦ãããã¨ããã¨çåããããã¨å¸¸ã æãã¦ããããããã¡ãã®ç ç©¶ã«ãããã¯ã¨ã¹ãã§ã³ã¯é常ã«å ±æã§ãã¾ããã ä»å調æ»ãã STS ãã¼ã¿ã§ã¯å¹³åãã¼ãªã³ã°ã§ã»ã¨ãã©ã®ã±ã¼ã¹ã«å¯¾å¿ã§ãã¦ãã¾ãããããã¡ã¤ã³ãçµã£ãããã¦ã¿ãã¨ç¹æã®ãã¡ã¤ã³ã§ã¯åé¡ãçºçãããããªã©ããããããããªãã¨æã£ã¦ãã¾ããã¨ã¦ãä»å¾ãæ°ã«ãªãè峿·±ãç ç©¶ã§ããã
E6-2: æå³å¤åã®çµ±è¨çæ³åã¯1000å¹´æãç«ã¤
- ç´¹ä»: 深澤
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/E6-2.pdf
æå³å¤åã®çµ±è¨çæ³åã¨ã¯ãé »åº¦èªã»ã©æå³å¤åã®åº¦åããå°ããå¤ç¾©èªã»ã©æå³å¤åã®åº¦åãã大ãããªãã¨ãããACL2016 ã«ã¦ Hamilton ããçºè¡¨ãããã®ãæãã¦ãã¾ããå ã®ç ç©¶ã«ãããæéç¯å²ã¯ 1800å¹´ãã2000å¹´ã§ãããããã¡ãã®ç ç©¶ã§ã¯èæ¸ã対象ã«å«ãããã¨ã§ãHamilton ãçºè¦ããæå³å¤åã®çµ±è¨çæ³åã1000å¹´çµéãã¦ãæãç«ã¤ãã¨ã調ã¹ã¦ãã¾ããã·ã¼ãèªãè¨å®ããèæ¸ãæ§æããã©ãã³èªã¨ã©ãã³èªããã¨ã«ãã¦æ´¾çããããã³ã¹èªã¨ã®éã§æå³å¤åãæãç«ã¤ãã調ã¹ãã¨ãããé »åº¦ãé«ãã»å¤ç¾©æ§ã®ä½ãã©ãã³èªèªæºã»ã©ããã³ã¹èªå½¢ã¨ã®æå³ã®ãããå°ãããªãå¾åãè¦ããã1000å¹´åä½ã§ãã£ã¦ãæå³å¤åã®çµ±è¨çæ³åãæãç«ã¤ãã¨ã示ããã¨ã®ãã¨ã§ããã
å人çã« Hamiltion ã®ç ç©¶ã¯å½æèªãã ã¨ãããã¨ã¦ãå°è±¡ã«æ®ã£ã¦ãã¾ããããã¡ãã®ç ç©¶ã¯èæ¸ã«çç®ãã¦ãã®æéç¯å²ãåºããåæãè¡ããã¨ããã®ãã¦ãã¼ã¯ã ãªã¨æããç´¹ä»ããã¦ããã ãã¾ãããæå³å¤åã®æ³åãé·ãæéãæ¸ãã¦ãå¤åããªãæ®éçãªãã®ã ã¨ããã¨ãä»å¾ãåæ§ã®å¤åã仿ã ãæ±ã£ã¦ããè¨èã§ãèµ·ãããã¨ãããã¨ã«ãªãã¾ããä¾ãã°ãã«ãã¨ã¼ã¸ã§ã³ã·ãã¥ã¬ã¼ã·ã§ã³ãªã©ã§äººå·¥è¨èªã®ã¢ããªã³ã°ãè¡ãéãªã©ã«ãä»åã®æ³åãåãå ¥ãããã¨ã§ããèªç¶ãªè¨èªçæãå¯è½ã«ãªãããããã¾ãããé常ã«è峿·±ãç ç©¶ã§ããã
B7-4: æèæ§é ãå©ç¨ããåãè¾¼ã¿è¡¨ç¾å¦ç¿ã®ææ¡
- ç´¹ä»: 深澤
- è«æ: https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/B7-4.pdf
æç« ãç»åã«å¯¾ããåãè¾¼ã¿è¡¨ç¾ã¯ãæ¤ç´¢ãå§ãã¨ããæ§ã ãªã¢ããªã±ã¼ã·ã§ã³ã§å©ç¨ããã¦ãã¾ãããã®ç ç©¶ã§ã¯ãæèæ§é ãå©ç¨ãããã¨ã§åãè¾¼ã¿è¡¨ç¾ã®è¡¨ç¾è½åãåä¸ãããããã®æé©è¼¸éãç¨ããæå¸«ãªãåãè¾¼ã¿å¦ç¿ææ³ãææ¡ãã¦ãã¾ããBERT ã対象ã¨ãã¦èããæãå è¡ç ç©¶ã§ã¯ CLS ãã¼ã¯ã³ã®ã¿ã«çç®ããå¦ç¿ãè¡ããã¾ãã䏿¹ã§ææ¡ææ³ã§ã¯æé©è¼¸éãç¨ãã¦ã·ã£ããã«ããæç« ã®åãã¼ã¯ã³ã«ã¤ãã¦è¼¸éã³ã¹ããæå°åããããã«å¦ç¿ããããã¨ã§ãæèæ§é ãèæ ®ããåãè¾¼ã¿è¡¨ç¾ãç²å¾ãããã¨ã«æåãã¦ãã¾ããå¾ãããã¢ãã«ã¯ SimCSE ãªã©ã®å è¡ç ç©¶ã§ææ¡ãããã¢ãã«ããã STS ã¿ã¹ã¯ãªã©ã«ããã¦é«ãæ§è½ã示ãã¦ããã¨ã®ãã¨ã§ãã
ãã¡ãã®ç ç©¶ãç´¹ä»ããã¦ããã ããçç±ã¯ãå ã«ç¤ºããå¹³åãã¼ãªã³ã°ã«é¢ãã調æ»ãè¡ã£ãè«æã¨åãã¢ããã¼ã·ã§ã³ã«ãããã®ã§ããã¤ã¾ããå¹³åãã¼ãªã³ã°ã§æ½°ãã»CLSã ãã«çç®ããããããã£ã¨è¯ãæ¹æ³ãããã®ã§ã¯ãªãããã¨ããåãã§ãããã¡ãã®è«æã¯æé©è¼¸éã«ãã£ã¦ç¹ç¾¤å ¨ä½ã§ã®å¦ç¿ãè¡ããã¨ããã¢ããã¼ãã§ãé常ã«ç´å¾ãããããã®ã§ãããçºè¡¨å¾ã®è³ªçå¿çã§ãç¹ç¾¤å ¨ä½ãè¦ãåã©ããã¦ãè¨ç®æéãããã£ã¦ãã¾ããã¨ããåé¡ãããã¨ã®ãã¨ã§ããããä»å¾ã追ãããããç ç©¶ã ãªãã¨æãã¾ããã
ãããã«
ä»åã®è¨äºã§ã¯ NLP2024 ã®åå ã¬ãã¼ãããå±ããã¾ããã
åé ã«ãæ¸ããéããå»å¹´ã¨æ¯è¼ã㦠NLP2024 ã¯ç¹ã« LLM ã®å卿ãå¼·ãæãã大ä¼ã ã£ãããã«æãã¾ãã LLM ã®æ§ç¯ãè©ä¾¡ã®ç ç©¶ã¯ãã¡ããããã®ä»ã®ç ç©¶ã«ããã¦ã LLM ã¨ã®æ¯è¼ã LLM ã®æ´»ç¨ãæèããç ç©¶ãå¤ãè¦ããã¾ããã ãã£ã¨ãã®æµãã¯ã¾ã ãã°ããç¶ãã®ã§ãããã æ¿åã®ææãè¿ããä¸ãä»å¤§ä¼ã§å¾ãããç¥è¦ããã¨ã« LLM ãã¯ããã¨ããææ°ã®è¨èªå¦çæè¡ãå®éã®ãµã¼ãã¹ã«ãæ´»ç¨ãã¦ããããã¨æãã¾ãï¼