DataFrameãã¤ã³ãã¯ã¹ã©ãã«ã§ã¯ãªãè¡çªå·ã§æå®ãããå ´åã«ã¯ixã§ã¯ãªãilocãä½¿ãæ¹ãç¡é£
é·ãæéãã°ã®åå ãããããããã£ã¦ç¸å½ã¤ã©ã¤ã©ãããããã®ã§ã¡ã¢ãããã®ãããã§ixã¨ilocã®éããããã£ãæ°ãããã
ãããªDataFrameãç¨æãããã¤ã³ãã¯ã¹åãè¡çªå·ã¨ä¸è´ãã¦ããªããããã©intåï¼ããããã¤ã³ãï¼ãDataFrameããé¨åçã«DataFrameãåãåºããå ´åã«èµ·ããããç¶æ³ã§ããã
>>> d = pd.DataFrame([[1,2,3],[4,5,6], [7,8,9]], columns=['A','B','C'], index=[3,4,5]) >>> d A B C 3 1 2 3 4 4 5 6 5 7 8 9
ãã¦ãæåã®2è¡ãåãåºããããªãã¨æã£ã¦ixã使ã£ã¦è¡æå®ããã¦ã¿ãã
>>> d.ix[ [0,1] ] A B C 0 NaN NaN NaN 1 NaN NaN NaN >>> d.ix[ [3] ] A B C 3 1 2 3
ãã? å¤ãå ¨é¨NaNã®DataFrameãè¿ã£ã¦ããï¼ï¼ã¤ã³ãã¯ã¹ã«åå¨ããå¤ã ã¨ã¡ããã¨è¿ã£ã¦ããã
ilocã§è©¦ãã¨æå¾ ã©ããã®çµæãè¿ã£ã¦ããã
>>> d.iloc[[0,1]] A B C 3 1 2 3 4 4 5 6
ã¤ã³ãã¯ã¹ãintåã§ãªãå ´åã«ã¯ixã¯è¡çªå·æå®ã¨å¤æãããã®ã§ãilocã¨æåãåãã«ãªãã
>>> d.index=['E','F','G'] >>> d A B C E 1 2 3 F 4 5 6 G 7 8 9 >>> d.ix[ [0,1] ] A B C E 1 2 3 F 4 5 6 >>>: d.iloc[ [0,1] ] A B C E 1 2 3 F 4 5 6
ã©ãããã¤ã³ãã¯ã¹ã©ãã«ãintã®å ´åã«ã¯ãixã使ã£ã¦è¡çªå·æå®ãã§ããªããªã模æ§ãå ¬å¼ã«ããããªãã¨ãæ¸ãã¦ããã
.ix supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.
DataFrameã¯æ°ãæãã¨è¡åã¨æã£ã¦ãã¾ã£ã¦ãã¤ãã¤ãndarrayã®è¡æå®ã®æè¦ã§ixã使ã£ã¦ãã¾ã£ã¦ããããã©ãixã¯ããã¾ã§ã¤ã³ãã¯ã¹ã©ãã«æå®ã®æ¹æ³ã ã¨æã£ã¦ãããæ¹ããããããæç¤ºçã«ã¤ã³ãã¯ã¹ã©ãã«ã§æå®ããå ´åã«ã¯locã
ãªããPandasæ¬(?)ã«ã¯ãã®ãã¨ã¯æ¸ããã¦ããªãã£ãã

Pythonã«ãããã¼ã¿åæå ¥é âNumPyãpandasã使ã£ããã¼ã¿å¦ç
- ä½è : Wes McKinney,å°æåå¡,é´æ¨å®å°,ç¬æ¸å±±é 人,æ»å£éè³,éä¸å¤§ä»
- åºç社/ã¡ã¼ã«ã¼: ãªã©ã¤ãªã¼ã¸ã£ãã³
- çºå£²æ¥: 2013/12/26
- ã¡ãã£ã¢: 大忬
- ãã®ååãå«ãããã° (19ä»¶) ãè¦ã