MS-DOSããã®éºç£ï¼ã³ãã³ãããã³ããã®ä¸ç
æ¬è¨äºã¯ãå
éåä¸ Advent Calendar 2024ã7æ¥ç®ã®è¨äºã§ãã
六間坂上 Advent Calendar 2024 - Adventar
ãä¹ ãã¶ãã§ãã
ãªãã¨ãããæè¿æè¡çãªãã¨ããã¦ãªãã¨æãã¤ã¤
æ¥åä¸è§¦ãããã¨ãå¤ãã³ãã³ãããã³ãã(cmd)ã§ã®ãããå¦çãããã°ã©ãã³ã°ã«ã¤ãã¦ã
linuxã®ã·ã§ã«ãã¡ã¤ã«ã¨ã®éãã¨å
±ã«ã触ãã¦ã¿ããã¨æãã¾ãã
ã³ãã³ãããã³ãã(cmd)ã¨ã¯
ã³ãã³ãããã³ããã¯Windowsã®å
ã«ãªã£ãOSã§ãããMS-DOSããæä½ããããã®ã·ã§ã«ã§ãã
ã·ã§ã«ã¨ã¯ãOSã®ã«ã¼ãã«ã¨å
¥åãç´ã¥ããã½ããã¦ã§ã¢çãªãã®ã§ãã
ç¾å®ä¸çã§è¨ãã¨ãå¤å½äººã¨ããã¹ãéã®ç¿»è¨³æ©çãªãã®ã ã¨æã£ã¦ãã ãã(ä¼ãã)
å
ã
ãMS-DOSããæä½ãããã®ã§ãããå¾æ¹äºæã¨ããä½ç½®ã¥ãã§æ®ããã¦ãã¦
ãã®ã¾ã¾ä»ã®windowsã«ãæè¼ããã¦ãããã®ã§ãã
以ä¸ã®æ¹æ³çã§èµ·åãããã¨ãã§ãã¾ãã
ã»æ¤ç´¢ã§ãã³ãã³ãããã³ãããã¾ãã¯ãcmdãã¨æ¤ç´¢
ã»windowsãã¼ + rãã¼ããåææ¼ãããåºã¦ããã¦ã£ã³ãã¦ã«ãcmdãã¨å
¥å
batãã¡ã¤ã«ã«ã¤ãã¦
linuxã§ããã°ãå¦çãã¾ã¨ãããã®ã.shãã¡ã¤ã«(ã·ã§ã«ãã¡ã¤ã«)ã«ã¾ã¨ãã¦å®è¡ãããã¨ãã§ãã¾ãã
windowsã®ã³ãã³ãããã³ããã§ãåãã.batãã¡ã¤ã«ã¨ãã¦ã¾ã¨ãã¦å®è¡ãããã¨ãã§ãã¾ãã
ä¾ãã°ãç¹å®ã®ãã£ã¬ã¯ããªã«é
ç½®ããã¦ããpythonãå®è¡ããã®ã§ããã°ã以ä¸ã®ãããªbatãã¡ã¤ã«ã«ãªãã¾ãã
cd file\to\path python sample.py
batãã¡ã¤ã«ããã°ã©ãã³ã°ã«ã¤ãã¦
cmdãã·ã§ã«ã§ããã°ããã¡ããããã°ã©ãã³ã°ãã§ãã¾ãã
é次å¦çã»æ¡ä»¶åå²ã»ç¹°ãè¿ãå¦çãã§ãããããããããé§ä½¿ããã°è²ã
ã§ãã¾ãã
ä¸æ¹ã§ãcmdä¸ã§ã®å¦çã¯é«ç´ããã°ã©ãã³ã°è¨èªã§æ
£ã親ããã§ããããã¨ã¯
ããé¢ãã¦ããããããããããªãé¨åãå¤ããããã®å ´ã§è§£èª¬ãã¦ã¿ããã¨æãã¾ãã
åæ
- batãã¡ã¤ã«ã¯windowsã§ãªãã¨åãã¾ãã
- éã«è¨ãã°windowsã§ããã°å¤§ä½åãã¾ãã
- ã³ãã³ãããã³ããã§å®è¡ããå ´åãããã©ã«ãã§ã¯sjisã§ãªãã¨æååããã¾ã
- windowsã ããä»æ¹ãªãã
batãã¡ã¤ã«ã®ä½ãæ¹
ããã¹ããã¡ã¤ã«ãç¨æãã¦ãæ¡å¼µåã.batã«å¤æ´ããã°batãã¡ã¤ã«ãåºæ¥ä¸ããã¾ãã
ããã«ã¯ãªãã¯ã§å®è¡å¯è½ã§ãã
åºæ¬çãªããã°ã©ãã³ã°ææ³
é次å¦ç
é次å¦çã¯å®è¡ãããã³ãã³ãããã®ã¾ã¾è¨è¼ããã°ããã§ãã
ä¾ãã°ãã£ã¬ã¯ããªã確èªããããã°ããdirãã³ãã³ãã§å®è¡ã§ãã¾ã
åºæ¬çã«å®è¡ãããã³ãã³ãããã®ã¾ã¾è¨è¼ããã°ããã§ãã
å¤æ°
cmdã®å¤æ°ã«ã¤ãã¦ã¯ãå¤æ°ã®æ¦å¿µãç¡ããã
ç°å¢å¤æ°ã使ããã¨ã¨ãªãã¾ãã
ç°å¢å¤æ°ã¯setã³ãã³ãã§ä½¿ãã¾ããã¾ããåç
§ããéã«ã¯%%ã§å²ããã¨ã§å¤ãåç
§ã§ãã¾ãã
ã·ã§ã«ã¨æ¯è¼ããã¨ä»¥ä¸ã«ãªãã¾ãã
shell
int_a=10 echo ${int_a} # echo $int_aã§ãåã
cmd
set int_a=10 echo %int_a%
ã¡ãªã¿ã«ãcmdã¯ç°å¢å¤æ°ãã¤ãã£ã¦ããããããé
åã¨ããæ¦å¿µã¯ããã¾ããã
ãã ããç¡çããé
åã£ã½ãè¦ãããã¨ã¯ã§ãã¾ãã
ãªããªããå¤æ°åã«[]ã使ããã¨ã許å¯ããã¦ããããã§ãã
ã¤ã¾ãã以ä¸ã®ãããªæ¸ãæ¹ãã§ãã¾ãã
set a[1]=10 echo %a[1]% rem aã¨ããé åãä½ãããããã§ã¯ç¡ããa[1]ã¨ããååã®å¤æ°ãä½ããã rem â»remã¯ã³ã¡ã³ãã§ãã
ãã®æç¹ã§ãã§ã«cmdãçããããã¨ããå¤ãã§ãããã
ã¾ã ã¾ã çã®ããé¨åã¯ããããã§ãã
æ¡ä»¶åå²
cmdã®æ¡ä»¶åå²ã¯shellã¨æ¯ã¹ã¦ãçããçãå°ãªãã§ãã
ãã ããæ¯è¼æ¼ç®åãlinuxã¨å°ãéã£ã¦ãããªã©ãå·®å¥åãå³ã£ã¦ããã®ãä½ãªã®ãã¯
åãããªãã§ãããçµ±ä¸ãã¦ã»ããã§ããã
cmd
set numA=1 set numB=1 if %numA% equ %numB%( echo "numA 㨠numB ã¯çãã" ) else ( echo "numAã㨠numB ã¯çãããªã" )
shell
numA=1 numB=1 if [ ${numA} -eq ${numB} ]; then echo "numA 㨠numB ã¯çãã" else echo "numAã㨠numB ã¯çãããªã" fi
ã¡ãªã¿ã«ä¸¡è
ã¨ãããã¡ã¤ã«ã®åå¨ãæååã®æ¯è¼æ¼ç®åãç¨æããã¦ããã®ã§
æ°ã«ãªãæ¹ã¯èª¿ã¹ã¦ã¿ã¦ãã
ç¹°ãè¿ã
ç¹°ãè¿ãã¯cmdã§ã¯ä¸ã§ã¯ã¨ã¦ãä¸æè°ãªæ§æã«ãªãã¾ãã
è¦ã¦ããã ããæ¹ãæ©ãã§ãããã
1ãã10ãåºåããããã°ã©ã ãshellã®æ¹ãåããã¦è¼ãã¦ããã¾ãã
cmd
for /L %%n in (1, 1, 10) do ( echo %%n )
shell
for i in 1 2 3 4 5 6 7 8 9 10 #for i in $(seq 1 5)ã§ãå¯ do echo $i done
ãã¦ãcmdå´ã®æ§æã§ãã以ä¸ã®ããã«ãªã£ã¦ãã¾ãã
for %%v in (files) do ( Commands )
ããã¡ã¤ã«æ¤ç´¢ãã対象ã対象ãæ¤ç´¢
ãfilesã®é¨åã%*ã«ãããã¨ã§ã³ãã³ãå¼æ°ã«å¯¾ãã¦ã«ã¼ãå¦ç
for /R %%v in (files) do ( Commands )
ããµããã©ã«ãå«ããå帰çãã¡ã¤ã«æ¤ç´¢
for /D %%v in (directories) do ( Commands )
ããã£ã¬ã¯ããªã対象ã«å¦çãå®æ½
for /L %%v in (start, increment, end) do ( Commands )
ãNåã«ã¼ããã
for /F ["FOptions"] %%v in (file) do ( Commands )
ãç¹å®ã®ãã¡ã¤ã«ã®ä¸èº«ã«å¯¾ãã¦1è¡ãã¤ã«ã¼ãå¦ç
for /F ["FOptions"] %%v in ('Command') do ( Commands )
ãã³ãã³ãã®å®è¡çµæã«å¯¾ãã¦1è¡ãã¤ã«ã¼ãå¦ç
FOptions ::=
delims=string
tokens=n, ...
skip=n
eol=string
usebackq
ãã¦ãæ¸ãã¦ãããã¨ããããã§ããããã
ããå®ã¯ä½ã«å¯¾ãã¦ã«ã¼ãåãåããã§foråã®æ§æè¦åãå¤ãã£ã¦ãã¾ãã
説æãé£ãããªãã®ã§ä»¥ä¸ã®ããã«è¨è¼ãã¾ãã
for <ã«ã¼ãè¦å> [<ãã¡ã¤ã«èªã¿è¾¼ã¿ãªãã·ã§ã³>] <ã«ã¼ãå¤æ°> in (<ã«ã¼ã対象>) do (<ã«ã¼ãå ã³ãã³ã>)
ãã¦ãcmdã®ã«ã¼ãæã¯ããã ãã§ãªããããã«è¤éãªä»æ§ãããã®ã§ãããç´¹ä»ãã¾ãã
ãªãã·ã§ã³å¼æ°ãã«ã¼ãå¤æ°
ä¾ãã°ã以ä¸ã®csvãã¡ã¤ã«ãããã¾ãã
# sample.csv
id,str1,str2
1,test,test2
2,hoge,hoge2
3,huga,huga2
ä¸è¨ãã¡ã¤ã«ãcmdã®ã«ã¼ãæã§å¦çããéã«ã¯ä»¥ä¸ã®ãããªããã°ã©ã ã«ãªãã¾ãã
for /F "skip=1 delims=, tokens=1,2,3" %%a in (sample.csv) do (
echo %%a
echo %%b
echo %%c
)
ããããä¸ã®ããã°ã©ã ãã¿ã¦è²ã èãããã¨ã¯ããã¨æãã¾ãã
- skipã¨tokenã£ã¦ãªãã ï¼
- ãªãã®bã¨cã¯ã©ãããåºã¦ããï¼
ããã«ã¤ãã¦ã¯ä»¥ä¸ã¨ãªãã¾ãã
- skipï¼ä¸ããä½è¡ç®ã¾ã§ã¹ãããããã
- tokenï¼åè¡ã®delimsã§åºåãããé¨åã®ããã¤ç®ãåç §ããã
- è¬ã®%%bã¨%%cã¯ä½ï¼cmdã®foræã§ã¯foræã§å®£è¨ãããå¤æ°ãåºæºã¨ãã¦ãtokenã®æ°ã ãèªåã§abcé ã«çæãã¾ãã%%bã§å®£è¨ããã¨token=1,2,3ã®å ´å%%b,%%c,%%dãèªåçæããã¾ãã
ä¸è¨ã®ããã«æå³ä¸æãªè¤éãªä»æ§ãããããã使ãã¨ãã¯èª¿ã¹ã¦ã¿ã¦ãã ããã
å¤æ°ã¹ã³ã¼ã
ãã¡ããã«ã¼ããããéã«ã¯ãã«ã¼ãå¤ã®å¤æ°ã宣è¨ããã
ã«ã¼ãå
ã§å¤æ°ã«å¤ãæ ¼ç´ãã¦ã«ã¼ããæããã¨ããäºããããã¯ãã§ãã
ä¾ãã°ä»¥ä¸ã®å ´åãã©ã®ããã«è¡¨ç¤ºãããã§ããããã
for /L %%n in (1, 1, 3) do ( set name=Yamada%%n echo My name is %name% )
çµæã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
My name is
My name is
My name is
ã¯ã¦ãå¤æ°ã¯ã©ãã«è¡ã£ãã®ã§ããããã
å®ã¯ã«ã¼ãã®ä¸ã§ãå¤æ°ãåç
§ãã¦ãcmdã§ã¯æåã«Foræãè©ä¾¡ããæç¹ã§ã®å¤æ°ãå±éããã¦ãã¾ããã
ä¸æãåç
§ãã§ãã¾ããã
ãããªå ´åãé
延å±éã®å½ä»¤ãä»ããå¿
è¦ãããã¾ããããã°ã©ã ã§æ¸ãã¨ä»¥ä¸ã§ãã
setlocal enabledelayedexpansion for /L %%n in (1, 1, 3) do ( set name=Yamada%%n echo My name is !name! ) endlocal
ãã®ä¸ãå¤æ°ã«ã¤ãã¦ã¯%%ã§ã¯ãªã!!ã§å²ãå¿
è¦ãããã¾ãããªããã¯ç¥ãã¾ããã
ã·ã§ã«ã¹ã¯ãªããã®å ´åããã®ãããªãã¨ã¯ããå¿
è¦ãªããæ®éã«åç
§ã§ãã¾ãã
é¢æ°ã«ã¤ãã¦
æå¾ã«é¢æ°ã«ã¤ãã¦è¨è¼ãã¦ããã¾ãã
ã³ãã³ãããã³ããããªãã¨é¢æ°ã¨ããæ¦å¿µãããã¾ããã
ãããã©ããããã£ã¦ï¼GOTOã使ãã¾ãã
ãã®æç¹ã§åãã人ã«ã¯ãããæããããããã¨æãã¾ãã
ã¾ãã»ã¨ãã©ä½¿ããã¨ã¯ãªãã¨æãã®ã§ãä»åã¯ç¹ã«è§£èª¬ãã¾ãããèªåã§ã°ã°ã£ã¦ãã ãã(æããã)
æå¾ã«
ä»ã§ã¯powershellãããã®ã§ãã³ãã³ãããã³ãããç©æ¥µçã«ä½¿ããã¨ãã人ã¯ãã¾ãããªãã¨æãã®ã§ãã
æ¥åä¸ã§ä½¿ããã¨ã«ãªããããªäººã¯ä¸åº¦æ³¨æç¹ã ãã§ãæãã¦ããã¦ãè¯ãããããã¾ããã
ã¨ã¯ãããèªåã§æ¹ãã¦ã¾ã¨ãã¦ã¿ã¦ãã£ã±ä½¿ãããã¯ãªããªã¨æãã¾ããã
åèã«ããã¦ããã ãããµã¤ãæ§
ãã©ã¤ãã·ã¼ããªã·ã¼
ãã©ã¤ãã·ã¼ããªã·ã¼
shussy8ï¼ä»¥ä¸ï¼ãå½äººãã¨ããã¾ããï¼ã¯ï¼æ¬ã¦ã§ããµã¤ãä¸ã§æä¾ãããµã¼ãã¹ï¼ä»¥ä¸,ãæ¬ãµã¼ãã¹ãã¨ããã¾ããï¼ã«ãããï¼ã¦ã¼ã¶ã¼ã®å人æ
å ±ã®åæ±ãã«ã¤ãã¦ï¼ä»¥ä¸ã®ã¨ãããã©ã¤ãã·ã¼ããªã·ã¼ï¼ä»¥ä¸ï¼ãæ¬ããªã·ã¼ãã¨ããã¾ããï¼ãå®ãã¾ãã
第1æ¡ï¼å人æ å ±ï¼
ãå人æ å ±ãã¨ã¯ï¼å人æ å ±ä¿è·æ³ã«ãããå人æ å ±ããæããã®ã¨ãï¼çåããå人ã«é¢ããæ å ±ã§ãã£ã¦ï¼å½è©²æ å ±ã«å«ã¾ããæ°åï¼çå¹´ææ¥ï¼ä½æï¼é»è©±çªå·ï¼é£çµ¡å ãã®ä»ã®è¨è¿°çã«ããç¹å®ã®å人ãèå¥ã§ããæ å ±åã³å®¹è²ï¼æç´ï¼å£°ç´ã«ããããã¼ã¿ï¼åã³å¥åº·ä¿éºè¨¼ã®ä¿éºè çªå·ãªã©ã®å½è©²æ å ±åä½ããç¹å®ã®å人ãèå¥ã§ããæ å ±ï¼å人èå¥æ å ±ï¼ãæãã¾ãã
第2æ¡ï¼å人æ å ±ã®åéæ¹æ³ï¼
å½äººã¯ï¼ã¦ã¼ã¶ã¼ãå©ç¨ç»é²ãããéã«æ°åï¼çå¹´ææ¥ï¼ä½æï¼é»è©±çªå·ï¼ã¡ã¼ã«ã¢ãã¬ã¹ï¼éè¡å£åº§çªå·ï¼ã¯ã¬ã¸ããã«ã¼ãçªå·ï¼é転å 許証çªå·ãªã©ã®å人æ å ±ããå°ããããã¨ãããã¾ããã¾ãï¼ã¦ã¼ã¶ã¼ã¨ææºå ãªã©ã¨ã®éã§ãªãããã¦ã¼ã¶ã¼ã®å人æ å ±ãå«ãåå¼è¨é²ã決æ¸ã«é¢ããæ å ±ã,å½äººã®ææºå ï¼æ å ±æä¾å ï¼åºå主ï¼åºåé ä¿¡å ãªã©ãå«ã¿ã¾ãã以ä¸ï¼ï½¢ææºå ï½£ã¨ããã¾ããï¼ãªã©ããåéãããã¨ãããã¾ãã
第3æ¡ï¼å人æ
å ±ãåéã»å©ç¨ããç®çï¼
å½äººãå人æ
å ±ãåéã»å©ç¨ããç®çã¯ï¼ä»¥ä¸ã®ã¨ããã§ãã
- å½äººãµã¼ãã¹ã®æä¾ã»éå¶ã®ãã
- ã¦ã¼ã¶ã¼ããã®ãåãåããã«åçããããï¼æ¬äººç¢ºèªãè¡ããã¨ãå«ãï¼
- ã¡ã³ããã³ã¹ï¼éè¦ãªãç¥ãããªã©å¿ è¦ã«å¿ãããé£çµ¡ã®ãã
- å©ç¨è¦ç´ã«éåããã¦ã¼ã¶ã¼ãï¼ä¸æ£ã»ä¸å½ãªç®çã§ãµã¼ãã¹ãå©ç¨ãããã¨ããã¦ã¼ã¶ã¼ã®ç¹å®ããï¼ãå©ç¨ããæããããã
- ã¦ã¼ã¶ã¼ã«ãèªèº«ã®ç»é²æ å ±ã®é²è¦§ãå¤æ´ï¼åé¤ï¼ãå©ç¨ç¶æ³ã®é²è¦§ãè¡ã£ã¦ããã ããã
- ææãµã¼ãã¹ã«ããã¦ï¼ã¦ã¼ã¶ã¼ã«å©ç¨æéãè«æ±ãããã
- ä¸è¨ã®å©ç¨ç®çã«ä»éããç®ç
第4æ¡ï¼å©ç¨ç®çã®å¤æ´ï¼
å½äººã¯ï¼å©ç¨ç®çãå¤æ´åã¨é¢é£æ§ãæããã¨åççã«èªããããå ´åã«éãï¼å人æ
å ±ã®å©ç¨ç®çãå¤æ´ãããã®ã¨ãã¾ãã
å©ç¨ç®çã®å¤æ´ãè¡ã£ãå ´åã«ã¯ï¼å¤æ´å¾ã®ç®çã«ã¤ãã¦ï¼å½äººæå®ã®æ¹æ³ã«ããï¼ã¦ã¼ã¶ã¼ã«éç¥ãï¼ã¾ãã¯æ¬ã¦ã§ããµã¤ãä¸ã«å
¬è¡¨ãããã®ã¨ãã¾ãã
第5æ¡ï¼å人æ å ±ã®ç¬¬ä¸è æä¾ï¼
å½äººã¯ï¼æ¬¡ã«æ²ããå ´åãé¤ãã¦ï¼ãããããã¦ã¼ã¶ã¼ã®åæãå¾ããã¨ãªãï¼ç¬¬ä¸è ã«å人æ å ±ãæä¾ãããã¨ã¯ããã¾ããããã ãï¼å人æ å ±ä¿è·æ³ãã®ä»ã®æ³ä»¤ã§èªããããå ´åãé¤ãã¾ãã
- 人ã®çå½ï¼èº«ä½ã¾ãã¯è²¡ç£ã®ä¿è·ã®ããã«å¿ è¦ãããå ´åã§ãã£ã¦ï¼æ¬äººã®åæãå¾ããã¨ãå°é£ã§ããã¨ã
- å ¬è¡è¡çã®åä¸ã¾ãã¯å ç«¥ã®å¥å ¨ãªè²æã®æ¨é²ã®ããã«ç¹ã«å¿ è¦ãããå ´åã§ãã£ã¦ï¼æ¬äººã®åæãå¾ããã¨ãå°é£ã§ããã¨ã
- å½ã®æ©é¢ãããã¯å°æ¹å ¬å ±å£ä½ã¾ãã¯ãã®å§è¨ãåããè ãæ³ä»¤ã®å®ããäºåãéè¡ãããã¨ã«å¯¾ãã¦ååããå¿ è¦ãããå ´åã§ãã£ã¦ï¼æ¬äººã®åæãå¾ããã¨ã«ããå½è©²äºåã®éè¡ã«æ¯éãåã¼ãããããããã¨ã
- äºã次ã®äºé ãåç¥ãããã¯å ¬è¡¨ãï¼ãã¤å½ç¤¾ãå人æ å ±ä¿è·å§å¡ä¼ã«å±åºãããã¨ã
å©ç¨ç®çã«ç¬¬ä¸è ã¸ã®æä¾ãå«ããã¨
第6æ¡ï¼å人æ å ±ã®é示ï¼
å½äººã¯ï¼æ¬äººããå人æ å ±ã®é示ãæ±ããããã¨ãã¯ï¼æ¬äººã«å¯¾ãï¼é æ»ãªããããé示ãã¾ãããã ãï¼é示ãããã¨ã«ãã次ã®ããããã«è©²å½ããå ´åã¯ï¼ãã®å ¨é¨ã¾ãã¯ä¸é¨ãé示ããªããã¨ãããï¼é示ããªã決å®ãããå ´åã«ã¯ï¼ãã®æ¨ãé æ»ãªãéç¥ãã¾ãããªãï¼å人æ å ±ã®é示ã«éãã¦ã¯ï¼1件ããã1ï¼000åã®ææ°æãç³ãåãã¾ãã
- æ¬äººã¾ãã¯ç¬¬ä¸è ã®çå½ï¼èº«ä½ï¼è²¡ç£ãã®ä»ã®æ¨©å©å©çã害ããããããããå ´å
- å½äººã®æ¥åã®é©æ£ãªå®æ½ã«èããæ¯éãåã¼ãããããããå ´å
- ãã®ä»æ³ä»¤ã«éåãããã¨ã¨ãªãå ´å
åé ã®å®ãã«ãããããï¼å±¥æ´æ å ±ããã³ç¹æ§æ å ±ãªã©ã®å人æ å ±ä»¥å¤ã®æ å ±ã«ã¤ãã¦ã¯ï¼ååã¨ãã¦é示ãããã¾ããã
第7æ¡ï¼å人æ å ±ã®è¨æ£ããã³åé¤ï¼
ã¦ã¼ã¶ã¼ã¯ï¼å½äººã®ä¿æããèªå·±ã®å人æ
å ±ã誤ã£ãæ
å ±ã§ããå ´åã«ã¯ï¼å½äººãå®ããæç¶ãã«ããï¼å½äººã«å¯¾ãã¦å人æ
å ±ã®è¨æ£ï¼è¿½å ã¾ãã¯åé¤ï¼ä»¥ä¸ï¼ãè¨æ£çãã¨ããã¾ããï¼ãè«æ±ãããã¨ãã§ãã¾ãã
å½äººã¯ï¼ã¦ã¼ã¶ã¼ããåé
ã®è«æ±ãåãã¦ãã®è«æ±ã«å¿ããå¿
è¦ãããã¨å¤æããå ´åã«ã¯ï¼é
æ»ãªãï¼å½è©²å人æ
å ±ã®è¨æ£çãè¡ããã®ã¨ãã¾ãã
å½äººã¯ï¼åé
ã®è¦å®ã«åºã¥ãè¨æ£çãè¡ã£ãå ´åï¼ã¾ãã¯è¨æ£çãè¡ããªãæ¨ã®æ±ºå®ãããã¨ãã¯é
æ»ãªãï¼ãããã¦ã¼ã¶ã¼ã«éç¥ãã¾ãã
第8æ¡ï¼å人æ å ±ã®å©ç¨åæ¢çï¼
å½äººã¯ï¼æ¬äººããï¼å人æ
å ±ãï¼å©ç¨ç®çã®ç¯å²ãè¶
ãã¦åãæ±ããã¦ããã¨ããçç±ï¼ã¾ãã¯ä¸æ£ã®æ段ã«ããåå¾ããããã®ã§ããã¨ããçç±ã«ããï¼ãã®å©ç¨ã®åæ¢ã¾ãã¯æ¶å»ï¼ä»¥ä¸ï¼ãå©ç¨åæ¢çãã¨ããã¾ããï¼ãæ±ããããå ´åã«ã¯ï¼é
æ»ãªãå¿
è¦ãªèª¿æ»ãè¡ãã¾ãã
åé
ã®èª¿æ»çµæã«åºã¥ãï¼ãã®è«æ±ã«å¿ããå¿
è¦ãããã¨å¤æããå ´åã«ã¯ï¼é
æ»ãªãï¼å½è©²å人æ
å ±ã®å©ç¨åæ¢çãè¡ãã¾ãã
å½äººã¯ï¼åé
ã®è¦å®ã«åºã¥ãå©ç¨åæ¢çãè¡ã£ãå ´åï¼ã¾ãã¯å©ç¨åæ¢çãè¡ããªãæ¨ã®æ±ºå®ãããã¨ãã¯ï¼é
æ»ãªãï¼ãããã¦ã¼ã¶ã¼ã«éç¥ãã¾ãã
å2é
ã«ãããããï¼å©ç¨åæ¢çã«å¤é¡ã®è²»ç¨ãæããå ´åãã®ä»å©ç¨åæ¢çãè¡ããã¨ãå°é£ãªå ´åã§ãã£ã¦ï¼ã¦ã¼ã¶ã¼ã®æ¨©å©å©çãä¿è·ããããã«å¿
è¦ãªããã«ä»£ããã¹ãæªç½®ãã¨ããå ´åã¯ï¼ãã®ä»£æ¿çãè¬ãããã®ã¨ãã¾ãã
第9æ¡ï¼ãã©ã¤ãã·ã¼ããªã·ã¼ã®å¤æ´ï¼
æ¬ããªã·ã¼ã®å
容ã¯ï¼æ³ä»¤ãã®ä»æ¬ããªã·ã¼ã«å¥æ®µã®å®ãã®ããäºé
ãé¤ãã¦ï¼ã¦ã¼ã¶ã¼ã«éç¥ãããã¨ãªãï¼å¤æ´ãããã¨ãã§ãããã®ã¨ãã¾ãã
å½äººãå¥éå®ããå ´åãé¤ãã¦ï¼å¤æ´å¾ã®ãã©ã¤ãã·ã¼ããªã·ã¼ã¯ï¼æ¬ã¦ã§ããµã¤ãã«æ²è¼ããã¨ãããå¹åãçãããã®ã¨ãã¾ãã
PandasãRDBã¨åãããã«æ±ãã¨è©°ã¾ããããã¨ããã¾ã¨ã
ãã®è¨äºã¯ãUnagi-Network Advent Calendar 2023 9æ¥ç®ãã®è¨äºã§ãã
Unagi-Network Advent Calendar 2023 - Adventar
åæ¸ã
Pandasã£ã¦çãããåãã§ããããã
Pythonã§ãã¼ã¿åæããã¦ããããã®ããªãã§ããã°ãã¡ãããåãã§ãããã
ããããPythonã§ãã¼ã¿åæãããéã«ä¸çªæåã«åºä¼ãã©ã¤ãã©ãªã ã¨æãã¾ãã
æ§ã
ãªæ©æ¢°å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ããã¼ã¿åæç³»ã®ã©ã¤ãã©ãªãªã©ã«ãå©ç¨ããã¦ããã®ã§
ãã®ã¾ã¾æ±ç¨çã«ä½¿ããããªã®ãè¯ããã¤ã³ãã§ãã
ãã®ããã«ãã¦ã¯ãããã¦ããPandasã§ãããå®ã¯æ°ãä»ããªãã¨
ããããããªããã¤ã³ããããã¤ãç¨æããã¦ãã¾ãã
ä»åã¯ãããªãã¤ã³ããæãã¤ãç®æã ãã§ãè¨è¼ãã¦ã¿ããã¨æãã¾ãã
pandasã¨ã¯
å ¬å¼ã«ã¯ä»¥ä¸ã®ããã«Pandasãç´¹ä»ããã¦ãã¾ãã
pandas: powerful Python data analysis toolkit
pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.
æ¥æ¬èªã«è¨³ãã¨ä»¥ä¸ã®ããã«ãªãã¾ãã
pandas: å¼·å㪠Python ãã¼ã¿åæãã¼ã«ããã
pandas ã¯ãããªã¬ã¼ã·ã§ãã«ããã¼ã¿ã¾ãã¯ãã©ãã«ä»ãããã¼ã¿ã®æä½ãç°¡åãã¤ç´è¦³çã«è¡ããããã«è¨è¨ããããé«éãã¤æè»ã§è¡¨ç¾åè±ããªãã¼ã¿æ§é ãæä¾ãã Python ããã±ã¼ã¸ã§ããããã¯ãPython ã§å®è·µçãªç¾å®ä¸çã®ãã¼ã¿åæãè¡ãããã®åºæ¬çãªé«ã¬ãã«ã®æ§æè¦ç´ ã¨ãªããã¨ãç®æãã¦ãã¾ããããã«ãããããè¨èªã§å©ç¨ã§ããæãå¼·åã§æè»ãªãªã¼ãã³ã½ã¼ã¹ ãã¼ã¿åæ/æä½ãã¼ã«ã«ãªãã¨ããå¹ åºãç®æ¨ãããã¾ãããã§ã«ãã®ç®æ¨ã«åãã¦é 調ã«é²ãã§ãã¾ãã
ã¾ãPythonã§è¡¨å½¢å¼ã®ãã¼ã¿ãæ±ãã®ã楽ã«ããã©ã¤ãã©ãªã¨ããæãã§è¦ãã¦ããããã°ããã§ãã
DBè¦ãããªå¦çãã§ãã¾ãã
Pandasã®æä½éã®ç¥è
æä½éã®ç¥èã¯ä»¥ä¸ãããã£ã¦ããã°å¤§ä¸å¤«ã§ãã
DataFrameï¼Pandasã«ããããã¼ãã«ãæ±ãåã®ãããªãã®ããã£ãã2次å
é
åã ã¨ç解ãã¦ããã¦ãã ããã
Seriesï¼Pandasã«ããããã¯ãã«ãæ±ãåã®ãããªãã®ããã£ãã1次å
é
åã ã¨ç解ãã¦ããã¦ãã ããã
indexï¼Pandasã«ããã¦ãè¡ãä¸æã«æå®ããæ·»ãåã
ä»åã¯Pandasã®åå¿è
åãã®ä½¿ãæ¹ã«ã¤ãã¦ã¯è§£èª¬ã¯ãã¾ããã
詳ããç¥ãããæ¹ã¯ä»¥ä¸ãµã¤ãã¨ãè¦ã¦ã¿ã¦ãã ããã
Pandas 入門 — ディープラーニング入門:Chainer チュートリアル
ãã ãPandasç¹æã®äºé ã§åã£ããåãã£ã¦ããªãã¨ãããªãé¨åã«é¢ãã¦ã¯é©å®è£è¶³ããã¾ãã
ã§ã¯ãPandasã§è©°ã¾ããããã¨ããã以ä¸ããã¾ã¨ãã¦ã¿ããã¨æãã¾ãã
Pandasã¯åæåã§ãããã¨
pandasã«ã¦DataFrameãæä½ãããããæç¹ã§å°ãé£ããæè¦ãè¦ããã¨æãã¾ãã
æ®æ®µcsvããèªã¿è¾¼ãã§ãããããã¨ãã®è¾ºæèããªãã®ã§ããï¼ã¨ãªãã¾ãã
ã¨ãããã表形å¼ãªã®ã§2次å é åãçªã£è¾¼ãã§ã¿ã¾ãããã
import pandas as pd table = [ [1,2,3,4,5], [1,2,1,2,1], ['a','b','c','a','b'] ] df = pd.DataFrame(table) print(df)
ä¸è¨ã®ããã°ã©ã ã§ããå®è¡çµæã¯ä»¥ä¸ã«ãªãã¾ãã
0 1 2 3 4 0 1 2 3 4 5 1 1 2 1 2 1 2 a b c a b
ã¾ããã®ã¾ã¾åºã¦ãã¾ããã
ã§ã¯ã以ä¸ã®å
¥åã¯ã©ããªããæ³åãã¦ã¿ã¦ãã ããã
import pandas as pd value = { 'a':[1,2,3,4,5], 'b':[1,2,1,2,1], 'c':['a','b','c','a','b'] } df = pd.DataFrame(value) print(df)
çãã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
a b c 0 1 1 a 1 2 2 b 2 3 1 c 3 4 2 a 4 5 1 b
ããï¼ã£ã¨æã£ãæ¹ãå¤ãã®ã§ã¯ãªãã§ããããã
ãããªãã§ããdictãå
¥ããã¨ãã®ååãæå®ãããç¶æ
ã§å
¥ãã®ã§ãã
æ®æ®µRDBãªã©ã§ãã¼ãã«ãæ±ãéã«ã¯è¡åä½ã§æ±ããã¨ãå¤ãã¨æãã¾ãã
pandasã¯ååä½ã§æ±ãææ³ãå¼·ãã§ãããªã®ã§ããããã£ãé常ã®ãã¼ãã«ãä½ãéã«ã
RDBã¨ã¯éã£ãæè¦ã§å®æ½ããªãã¨ããã¾ããã
ã¡ãªã¿ã«ã2次å é åã¨åãããã«å ¥ããããã«ã¯ã以ä¸ã®ããã«æå®ãããå¿ è¦ãããã¿ããã§ãã
import pandas as pd value = { 'a':[1,2,3,4,5], 'b':[1,2,1,2,1], 'c':['a','b','c','a','b'] } df = pd.DataFrame.from_dict(value,orient='index') print(df)
ã¡ãã£ã¨é¢åã§ããã
ã¾ããåæåã®ããç¹å®ã®è¡ãæå®ããããã«ã¯å°ã工夫ãå¿
è¦ã§ãã
é常ã®2次å
é
åã¨åãããã«æ±ãã¨å°çãè¦ã¾ãã
2次å
é
åã§ã¯ã1è¡ç®ã欲ãããã°[1]ã¨ãã§é
åã®æ·»ãåãã¤ããã°ããã®ã§ãã
pandasã ã¨ç¹æ®ãªã¡ã½ãããå©ç¨ããªãã¨ãããªãã§ãã
ä¾ãã°1è¡ç®ãåå¾ããã«ã¯ä»¥ä¸ã§ãã
import pandas as pd table = [ [1,2,3,4,5], [1,2,1,2,1], ['a','b','c','a','b'] ] df = pd.DataFrame(table) print(df.loc[0])
å°ãç¹æ®ãªé¢æ°ã使ããªãã¨ãããªãã§ãã
(å¾è¿°ãã¾ããããã¾ãã¾indexã0ãªã®ã§0ã¨æå®ãã¦ãã¾ãããindexãå¥ã§ãã£ãå ´åã¯ãã®ãã¼ãæå®ããå¿
è¦ãããã¾ãã)
ä»ã«ãå試è¡ã®ãããã¼ã¿ã®æ¿å
¥ãåé¤ã«éåæãæããé¨åã¯å¤ãã¨æãã¾ãã
ä¸æ¸ããããããã£ä¾åã®è©±
以ä¸åºåã®å¤ã¯ä½ã«ãªãã§ããããã
a=5
a+1
print(a)
6ã¨çããããªãã¾ãããããã§åºåãããã®ã¯5ã§ããã
ãªããªãå¤æ°ãæ´æ°ãã¦ããªãããã§ãã
ãã¼ãã«ãæ±ãpandasã§ãåããããªãã¨ãããçºçãã¾ãã
dfããããé¢æ°ã§åºåãããã®ã¯èªåèªèº«ãæ´æ°ãããdfã®ã³ãã¼ãè¿ãã¾ãã
ä¾ãã°è¡ãåé¤ããé¢æ°ã®dropã¨ãã¯ããå¼ã£ãããã¾ãã
import pandas as pd value = { 'a':[1,2,3,4,5], 'b':[1,2,1,2,1], 'c':['a','b','c','a','b'] } df = pd.DataFrame(value) #ä¸æ¸ãããã¦ããªãã®ã§dfã¯å ã®ã¾ã¾ df.drop([1]) print('no inplace:\n',df) # dfãä¸æ¸ããããã df = df.drop([1]) # df.drop([1],inplace=True) ãã¡ãã§ãåãæå³ã¨ãªããä¸ã®æ¹ãä¸æ¸ããããã®ãããããããã®ã§æ¨å¥¨ããã¦ããã print('inplaced:\n',df) del df['a'] # åã®åé¤ã¯å¼·å¶ä¸æ¸ãããã print('del:\n',df)
pandasã®è¨è¨ææ³ã¨ãã§ããããã
æ¸ãæ¹ã«ã¯è²ã
ããã®ã§ããã代表çãªä¾ã ã¨ä¸è¨ã®ããã«ãªãã¾ãã
(ãã®è¾ºãã®ã·ã³ã¿ãã¯ã¹ã·ã¥ã¬ã¼ãããã®ãçµæ§å³ãããã¤ã³ãã§ãããPythonã¯æ¸ãæ¹ãçµ±ä¸ãããã®ãå©ç¹ãªã®ã«â¦)
indexãé£é¢ãªè©±
RDBä¸ã§ã¯å¿
é ã®æ¦å¿µã¨ãã¦ä¸»ãã¼ãããã¾ãã
RDBã§ã¯ç¹å®ã®ã«ã©ã ãæå®ãã¦ä¸»ãã¼ã«ãã¾ãããpandasã§ã¯ã主ãã¼ã¨å¼ã°ãããããªæ¦å¿µã¨ãã¦Indexãåå¨ãã¾ãã
Indexã¯ã«ã©ã ã¨ã¯å¥ã«ããåå¨ã§ãåè¡ãä¸æã«æå®ããã©ãã«ã¨ãªãã¾ãã
ã¡ãªã¿ã«ãã¤ã³ããã¯ã¹ãã«ã©ã 両æ¹Indexãªãã¸ã§ã¯ãã§ãã
詳細ã¯ãã®äººã®è¨äºã¨ãåèã«ãªãã¾ãã
PandasのIndexの理解と使い方まとめ - DeepAge
ä¸è¨ã«è¨è¼ã®éããIndexã¯ããã¾ã§ã©ãã«ã§ããã®ã§DBã®ä¸»ãã¼ã®ãããªåãã¯ãã¾ããã
ããããDataFrameã¯RDBã®ããã«ä¸»ãã¼å¶ç´ãéNULLå¶ç´ã¯ããã¾ããã
ãªã®ã§ãã®ãããªãã¨ã¯èªãæ°ã«ããªããå®è£
ãããªãã¨ç大ã«ãã°ãã¾ãã
ä¾ãã°ä»¥ä¸ã®ãããªãã¨ãæ®éã«ã§ãã¾ãã
import pandas as pd value = { 'a':[1,2,3,4,5], 'b':[1,2,1,2,1], 'a':['a','b','c','a','b'] } df = pd.DataFrame(value) print(df)
ã¡ãªã¿ã«ä¸è¨å®è¡çµæã¯ä»¥ä¸ã«ãªãã¾ãã
a b 0 a 1 1 b 2 2 c 1 3 a 2 4 b 1
ãããªé¢¨ã«RDBã¨ã¯éã£ã¦å¶ç´ã¯ç¡ãã®ã§
RDBã¨åãããã«ä½¿ãã¨æå³ããªãç®æã§ãã°ãå¼ãèµ·ããå¯è½æ§ãããã¾ãã
RDBã¨ã®æ¯è¼ãTipsã¯ãã®äººã®è¨äºãåèã«ãªãã¾ãã
pandas初級者に送りたいTips
ç¡ãã«åããã話
ããã°ã©ãã³ã°è¨èªã«ããã¦åã£ã¦ãåãé¢ããªãåå¨ã®åã
åã¨ããã®ã¯ãã®å¤æ°ãã©ã®ãããªä¸èº«ãã表ããããè£å´ã§ã¯ã¡ã¢ãªã®ç¢ºä¿ã«ä½¿ããããã¨ããã°ã©ãã³ã°è¨èªã«ããã¦åã¨ããã®ã¯æèããããå¾ãªããã®ã§ãã
ã§ã¯çããã«åé¡ã§ãã
æ°åã®6ã¯ä½åã§ããããã
ããã§ãã代表çãªãã®ã¨ããã°çãããåç¥int(Integer)åã§ããã
å®éã«ã¯æ°åã®6ã ããã¨ãã£ã¦åãæ確ã«ãããããã§ã¯ãªãã®ã§ããã大ä½ä½ã®åã«å
¥ããã°ãããã¯æ±ºã¾ã£ã¦ãã¾ãã
ã¾ãåé¡ã§ãã
æ°åã®1.6ã¯ä½åã§ããããã
ãã¡ããfloatåã§ãããdoubleã§ãè¯ãã§ãããå°æ°ã表ç¾ã§ããåãå¿
è¦ã§ãã
ã§ã¯ãNullã¯ä½åã§ããããã
ããã§ãããåãªãã¦ããã¯ãããªãã§ãããNullãªãã§ãããã
ãã¦ãpandasã«ã¯Nan(Not a number)ã¨ããå¤ãããã¾ãã
ã§ã¯ããã¤ã¯ä½åã§ããããã
å¯ããããçããæµç³ã§ããããã§ãããfloatåã§ããã
ã¯ï¼ã¨æã£ãçããã念ã®ããããä¸åº¦è¨ã£ã¦ããã¾ãã
pandasã®nanã¯floatåã§ãã
ã§ã¯ç¢ºãããããã«å®è¡ãã¦ã¿ã¾ããã
import pandas as pd table = [ [1,2,3,4,5], [1,2,1,2,1], ['a','b','a','b'] ] df = pd.DataFrame( table, columns=['col_0','col_1','col_2','col_3','col_4'] ) print(df) print('type:',type(df['col_4'][2]))
çµæã¯ä»¥ä¸ã¨ãªãã¾ãã
col_0 col_1 col_2 col_3 col_4 0 1 2 3 4 5.0 1 1 2 1 2 1.0 2 a b a b NaN type: <class 'numpy.float64'>
è¨è¼ã®éãNanã¯Numpyã®float64åã§ãã
å¾ã
話ãã¾ãããããã¤ãçµæ§ãªæªããããããã¾ãã
ã¡ãªã¿ã«ãPandasã«ãããNullã®ãããªãã®ã«ã¯
Noneã¨Nanã¨NaTãããã¾ãã
NaTã¯(Not a Time)ã®ç¥ã§ãåã¯ã
ããå°ã詳ããç¥ãããæ¹ã¯ä»¥ä¸ã¨ãè¦ã¦ã¿ãã¨è¯ãã¨æãã¾ãã
Pythonで値がNaN(Not a Number)、NaT(Not a Time)、None、unknownの違いって? - ts0818のブログ
åæ¨è«ãéªæªãªãã¨
Pandasã¯åæ¨è«ãéªæªãªå ´åãããã¾ãã
ã§ã¯ããã§åé¡ã§ãã
以ä¸ã®ã³ã¼ãã§ä½ããããã¼ãã«ã¯ã©ããªãã§ããããã
table = [ [1,2,3,4,5], [1,2,1,2], ] df = pd.DataFrame( table, columns=['col_0','col_1','col_2','col_3','col_4'] )
åã®å®è¡çµæãè¦ã¦ããæ¹ã¯ãããã¨æãã¾ãããæ£è§£ã¯ãã¡ãã§ãã
col_0 col_1 col_2 col_3 col_4 0 1 2 3 4 5.0 1 1 2 1 2 NaN
ããï¼åãå¤ãã£ã¦ãã奴ãä¸äººãã¾ããâ¦
ãããªã®ã§ãã
pandasã§ã¯ãã¼ã¿ãèªã¿è¾¼ãã¨ãã«åæ¨è«ãçºçãã
æã大ããªåã«åã®å¤ããã¹ã¦å¼ã£å¼µããã¾ãã
ã§ãå
ã»ã©ç´¹ä»ããéããNanã¯floatåã®ãã
intããåã¨ãã¦ç¯å²ã大ããfloatã¨ãã¦çµ±ä¸ããã¾ãâ¦
ãã£ã¨æãããä¾ã示ãã¨ã以ä¸ã®ãããªå ´ååããã¡ããã¡ãã«ãªãã¾ãã
table = [ ['1',2,3.0,4,5], [1,2,1,2], ] df = pd.DataFrame( table, columns=['col_0','col_1','col_2','col_3','col_4'] ) print(df.dtypes)
ä¸è¨ãå®è¡ããçµæã以ä¸ã¨ãªãã¾ãã
col_0 object col_1 int64 col_2 float64 col_3 int64 col_4 float64 dtype: object
ã§ãããããã®ã¾ã¾CSVãªã©ã«åºåãã¦ãã¾ãã¨ãã©ããªãããå¤ãã§ãããâ¦
ä¸è¨ã®ä¾ã§ããã°10åãããã¼ã¿ãç¡ãã®ã§ã¾ã ç®è¦ç¢ºèªãã§ãã¾ãã
ãã¼ã¿åæã§1000ä¸è¡ã¨ãã®åæããå§ããã¨æå³ããªãäºãçºçãã¾ãã
ä¾ãã°IDã§0åãããã¦ãã5æ¡ã®æ°å¤ãèªã¿åã£ã¦
Pandasåãåæã«intã ã¨å¤æãã¦0ãæ¶ãã¦ãã¾ãæ¡ä»¶ã§ä¸è´ããªããªãã¨ããäºã容æã«çºçãã¾ãã
対çã¨ãã¦ã¯ãã¼ã¿ãèªã¿è¾¼ãéã«ã¯åãæå®ããããpandraã¨ããpandasã®åãã§ãã¯ç¨ã©ã¤ãã©ãªãç¨ãããã¨ãã ã¨æãã¾ãã
ã¾ã¨ã
Pandasã¯Pythonã§è¡¨å½¢å¼ã®ãã¼ã¿ãæ±ãä¸ã§ã¯ã¨ã¦ã便å©ãªã®ã§ãã
RDBã£ã½ã使ããã¨ãããããã¨ãããªãã«å°é£ãçºçãã¾ãã
ãã ããã®è¾ºãã£ã¡ãã¨ç解ãã¦ããã°ã¨ã¦ãå¿å¼·ãå³æ¹ã«ãªãã¯ããªã®ã§
ãã²è²ã
試ãã¦ã¿ã¦è©°ã¾ã£ã¦ã¿ã¦ãã ããã
èæ¯ã課é¡ã«èå³ããã人ã¯ããã«ä»¥ä¸ã®è¨äºãèªãã§ã¿ã¦ãè¯ãã¨æãã¾ãã
(翻訳)Apache Arrowと「pandasの10項目の課題」 #Python - Qiita
AzureMLã使ãããªãã®ãé£ããã£ã話
åæ¸ã
ãã®è¨äºã¯ãUnagi-Network Advent Calendar 2023 3æ¥ç®ãã®è¨äºã§ãã
Unagi-Network Advent Calendar 2023 - Adventar
ãä¹
ãã¶ãã§ãï¼
æçµæ´æ°ã2å¹´åãªã®ã§ãããä»åAdvent Carenderã«ãèªããã¦ããã ãã
ãã®2å¹´éãããã§æºãã¦ããããã®ãé©å½ã«æ¸ãã¦ãããã¨æãã¾ãã
åå£ä¸
çããï¼æ©æ¢°å¦ç¿ãã£ã¦ãã¾ããï¼ï¼
æè¿ã¯ã¯ã©ã¦ããµã¼ãã¹ã§æ©æ¢°å¦ç¿ãã§ãããã®ãå¤ããã£ãããã¦ããã¼ãã«ã¯ä¸ãã£ã¦ããã¨æãã¾ãã
3大ã¯ã©ã¦ããµã¼ãã¹ã¨è¨ãã°ãAzureãAWSãGCPã§ãããå社ã¨ãã«æ©æ¢°å¦ç¿ã®ãµã¼ãã¹ããã¡ããæã£ã¦ãã¾ãã
Googleã¯æ©æ¢°å¦ç¿ç³»ã®ãµã¼ãã¹ãå¼·ããAWSãSageMakerã巨大ãªãµã¼ãã¹ãæã£ã¦ãã¾ããã
ãã®2ã¤ã¯ã¤ã³ãã«ã¨ã³ãµã¼ãæ¯è¼çå¤ãå°è±¡ã§ãã
ãã¦ãã§ã¯Azureã¯ã©ãã§ããããã
Azureã¯Azure Machine Learning(é称AzureML)ã¨ãããµã¼ãã¹ãæä¾ãã¦ããã®ã§ãããå®ã¯ããã¾ã使ããã¦ããªãã®ã§ã¯ï¼
ãã®åº¦è²ã
ããAzureMLã使ããã¨ã«ãªã£ãã®ã§ãããAzureMLã使ãããªãã®ãé£ããã£ã話ãæ¸ãã¦ã¿ããã¨æãã¾ãã
â»ä»ã®æ©æ¢°å¦ç¿ãµã¼ãã¹ããã¾ã使ã£ããã¨ãç¡ãããããªãåè¦ãå
¥ã£ã¦ããã¨æãã¾ãã
AzureMLã¨ã¯
ä¸å¿ç´¹ä»ã ããã¦ããã¾ãã
å
¬å¼ç´¹ä»ã§ã¯ä»¥ä¸ã®ããã«ç´¹ä»ããã¦ãã¾ãã
ãAzure Machine Learningã¨ã¯ä¼æ¥åãä»æ§ã®AI ãµã¼ãã¹ãã
ã¨ã³ããã¼ã¨ã³ãã®æ©æ¢°å¦ç¿ã©ã¤ããµã¤ã¯ã«å
¨ä½ã§å©ç¨ã§ãã¾ããã
ã¾ããããããã¾ãããã
ãã£ãã説æããã¨ããã¼ã¿ã®åæãæ©æ¢°å¦ç¿ã®ã¢ãã«ä½æããããã¤ãéç¨ã¨ããæ©æ¢°å¦ç¿ãç¨ãããµã¼ãã¹ãä½ã£ã¦éç¨ããã¾ã§ã®
ä¸é£ã®æµãããã¹ã¦1ã¤ã®ãã©ãããã©ã¼ã ä¸ã§ã§ããã¨ãããã®ã§ãã
詳ããã¯ä»¥ä¸ã®URLãã覧ãã ããã
Azure Machine Learning - サービスとしての ML | Microsoft Azure
ä»åã¯åæ¸ãã§ãæ¸ãã¾ããããAzureMLã使ããã¨ããã£ãã®ã§ãã
使ãã®ãé£ããã£ã話(ç½ )ãè¨è¼ãã¦ã¿ããã¨æãã¾ãã
â»2023å¹´11ææç¹ã§ã®è©±ããã¦ããã¾ãã
ç ´å£çãã¼ã¸ã§ã³ã¢ããããã件
ã¾ãåæã¨ãã¦ãAzureMLã¯ä»ãªãªã¼ã¹ããã¦ãããã®ã¨ãã¦ãv1ã¨v2ãããã¾ãã
ãã¼ã¸ã§ã³ã¨è¨è¼ããã¦ããã®ã§éå»ã®æ©è½ã¯å½ç¶ä½¿ãããã®ã¨æã£ã¦ããããã®ããªãã
ã¾ããã®èãæ¹ãæ¨ã¦ã¾ãããã
AzureMLã¯v1ã¨v2ã§ã¯å¤§ããéããæ¦å¿µãã®ãã®ãå¤æ´ããã¦ããå ´åãããã¾ãã
詳細ã¯ä»¥ä¸ã®ãµã¤ãã¨ãè¦ã¦ãããã¨è¯ããããããªãã§ãã
Azure Machine Learning SDK v2の基本的な使い方紹介 - ISID テックブログ
MLOps のための Azure Machine Learning CLI v2 / SDK v2 #Azure - Qiita
ã¯ã©ã¹åã使ãæ¹å«ã大ããå¤ãã£ã¦ããã¨ãããããã®ã§èªåãä»ã©ã¡ãã使ã£ã¦ããããæèããå¿
è¦ãããã¾ãã
æ°ããæ¹ã使ã£ã¦ããã°ããããv2ä¸æã§ã¯ï¼ã¨æã人ãå¤ãã§ãããã
å®éã«MSå
¬å¼ã§ãv2ãæ¨å¥¨ãã¦ããããã§ãã
Azure Machine Learning CLI と SDK v2 - Azure Machine Learning | Microsoft Learn
ãã¡ããæ°ããæ¹ã使ãã®ã¯ããæ®éã®èãæ¹ã ã¨æãã¾ãã
ãã£ããv1ããã¢ãããã¼ãããã¦ããã®ã§ããã°ã§ããâ¦
ãã®v1ããv2ã¸ã®ã¢ãããã¼ããæ©æ¢°å¦ç¿ã«å¿
è¦ãªæ©è½ããã¹ã¦ç§»è¡ããã¦ããããã§ã¯ç¡ãããã§ãã
ä¾ãã°ããªããã¨å¼ã°ããå¦ç¿ãããã¼ã¿ã«å¤åãçºçãã¦ãããã確èªããæ©è½ã¯v2ã«ã¯åå¨ããªãããã§ãã
(ãããv1ããã¬ãã¥ã¼ç)
ãã®ããããã¹ã¦ã®æ©è½ã使ãããªãããã«ã¯ãv1ã¨v2ã®æ
å ±ã両æ¹è¿½ãå¿
è¦ãããã¾ãã
v2ã§èª¿ã¹ã¦ãç¡ããã°v1ã§èª¿ã¹ã¦â¦ã¨ãã2éã«èª¿æ»ããå¿
è¦ãããã¾ãã
ã¨ããããã§ãèªåãä»è§¦ã£ã¦ããã®ãv1ãªã®ããv2ãªã®ããããã¦ãã®æ©è½ã¯ä½¿ããã®ãããã£ããã¨èª¿ã¹ãå¿
è¦ãããã¾ãã
(ããã¦v2ã®SDKã§ãv1ã§ã§ããazuremlã®æ©è½ã¯è§¦ããã¦ããï½)
欲ããæ å ±ãæ¢ãã¥ãã件
ã¨ããããã§v1ãv2ã®éããããã®ã§ãæ
å ±ããã£ããã¨æ¢ãå¿
è¦ãããã¾ãã
ãã ãæ
å ±ãæ¢ãã¨ããã«ãä¸è¦å´ããã¾ãã
ä¾ãã°ãä»å触ããã¨ã«ãªã£ããã°å¨è¾ºã«ã¤ãã¦ã§ããã
v1ã§ã¯azureml_runã¨ããã¯ã©ã¹ãç¨ãã¦ããã®ã§ãããv2ã§ã¯mlflowã«çµ±åãããããã§ãã
ãããmlflowã®ããã¥ã¡ã³ããæ¢ãã«è¡ãã¾ãããã
ä¾ãã°ãããã§ãã
Python API — MLflow 2.8.1 documentation
MLflowã§ãã°ãåå¾ãããã¨ãã«ã¯ãã¯ãå
¬å¼ãè¦ãã®ãä¸çªï¼
ã¨ããããã§mlflowã®å
¬å¼ãè¦ã«æ¥ã¾ããã
ã§ã¯æ··åè¡åãè¨é²ãããã®ã§ãmlflow.log_tableãã¨ãã®ã¡ã½ãã使ã£ã¦ã¿ã¾ãããã
å®ã¯ä¸è¨ã¯ç½ ã§ããazuremlã®mlflowã«log_tableã¨ããã¡ã½ãããªã©ããã¾ããã
MLflow を使ったメトリック、パラメーター、ファイルのログ - Azure Machine Learning | Microsoft Learn
azuremlå
¬å¼ã«ã使ãããªã©ã¨ã¯ã©ãã«ãæ¸ãã¦ããã¾ããã
azuremlå
¬å¼ããã£ããè¦ãªãæ¹ãæªãã§ãã
ã¨ããããã§ãå¤é¨ã®OSSãã¤ã³ãã¼ãããã¨ãã¦ã
azuremlå
¬å¼ã«æ¸ãã¦ããæ¹ãæ£ããã£ãããã¾ãã
(ããããã§ãããå
é¨ã§ä½ãæ¹é ããã¦ããã®ãã¨â¦åã ãã¨ã¯æãã¾ããâ¦)
ã¡ãªã¿ã«v1æ代ã«ã¯ããã±ã¼ã¸ã¯éãã¾ãããã£ããããªã®ã§æ´ã«æ··ä¹±ã極ãã¾ãã
SDK v1 から MLflow へのログの移行 - Azure Machine Learning | Microsoft Learn
ããã¥ã¡ã³ãã«æ¸ãã¦ãªãä»æ§ãåå¨ãã件
ã§ã¯ãã£ããã¨å
¬å¼ã®ããã¥ã¡ã³ããæ¢ãã¦ã¿ã¾ãããã
ä»åã¯pipelineããããã¤ããããã®YAMLãã¡ã¤ã«ã®æ¸ãæ¹ãè¦ã¦ã¿ã¾ãããã
â»è£è¶³èª¬æ
- pipelineï¼å¦ç¿ãæ¨è«ãªã©ä¸é£ã®æµããé åºæå®ãã¦ã¾ã¨ãã¦å®è¡ãããã®ãè¤æ°ã®jobãããªã
- jobï¼å®è¡ã®æå°åä½ãä¾ãã°echoã³ãã³ããpythonã³ãã³ãã®ããã«ã³ãã³ããå®è¡ã§ããã
CLI (v2) パイプライン ジョブの YAML スキーマ - Azure Machine Learning | Microsoft Learn
$schema: https://azuremlschemas.azureedge.net/latest/pipelineJob.schema.json type: pipeline display_name: hello_pipeline_abc settings: default_compute: azureml:cpu-cluster inputs: hello_string_top_level_input: "hello world" jobs: a: command: echo hello ${{inputs.hello_string}} environment: azureml:AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest inputs: hello_string: ${{parent.inputs.hello_string_top_level_input}} b: command: echo "world" >> ${{outputs.world_output}}/world.txt environment: azureml:AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest outputs: world_output: c: command: echo ${{inputs.world_input}}/world.txt environment: azureml:AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest inputs: world_input: ${{parent.jobs.b.outputs.world_output}}
pipelineã¯é çªã大äºãªã®ã§ä¸è¨ã®ä¾ã ã¨
aâbâcã®é çªã§å®è¡ãã¦ã»ããâ¦ã®ã§ãã
ãã¤ã¯ããã¤ããåã¸ã§ãã®å
¥åã¨åºåã«ä¾åé¢ä¿ãç¡ãã¨é çªã«å®è¡ãã¦ããã¾ããã
ãªã®ã§ä¸è¨ä¾ã ã¨ãaã¨bã¯ä¸¦åã«å®è¡ããbâcã¯é çªã«å®è¡ããã¾ãã
ãããªãã¨ã©ãã«æ¸ãã¦ãããã£ã¦ï¼
ãããã«ç¡ããã°ç¡ãã§ããã
ãããåã¸ã§ãã§åºåãç¡ãå ´åã¯ã©ãããã°ä¾åé¢ä¿ãä½ããã®ï¼
çãï¼YAMLãã¡ã¤ã«ã§pipelineãå®ç¾©ããå ´åã«ã¯ä¾åé¢ä¿ã¯åºå以å¤ã§ã¯ä½ãã¾ããã
ãããªãã¨ã©ãã«æ¸ãã¦ãããã£ã¦ï¼
ãããã«ç¡ããã°ç¡ãã§ããã
ã¨ããããã§ç´°ããªä»æ§ã«é¢ãã¦ã¯ãå®è¡ãã¦ã¿ãã¾ã§åããã¾ããã
å®è¡ãã¦ãtry and errorã§é²ãã¦ããå¿
è¦ãããã¾ããã
åãæ¸ãã¦ãã件
ã¨ãããããããã¥ã¡ã³ãã«æ¸ãã¦ãªããã¨ã¯è©¦ãã¦ã¿ããããªãã®ã§è©¦ãã¦
ã§ã¯æ¸ãã¦ãããã¨ã¯ãã®éãã«åãã¨ããäºã§é²ãã¾ãããã
ã§ã¯ãã¼ã¿ããªããæ¤åºæ©è½ã使ã£ã¦ã¿ã¾ãããã
â»è£è¶³èª¬æ
- ãã¼ã¿ããªããç£è¦ï¼å¦ç¿ãã¼ã¿ã®å¾åãè¦ã¦ç°å¸¸ãªå¦ç¿ãã¼ã¿ã®å¤åãçºçãã¦ããªãããã¢ãã¿ã¼ããç£è¦ããã®æã®ãã¼ã¿ã®å¤åãããªããã¨ããã
データセットでデータ ドリフトを検出する (プレビュー) - Azure Machine Learning | Microsoft Learn
(ãã§ã«v1ãããªã and ãã¬ãã¥ã¼ã¨ããè¨è¼ã§å«ãªäºæããããªãã®ã¯ç½®ãã¨ãã¾ãããã)
ã¨ãããããã¥ã¼ããªã¢ã«ã«å¾ã£ã¦ãç¬èªã®ãã¼ã¿ãç¨ããªããè¨è¼ãã¦ã¿ãã¨â¦
6ãæåã®ãã¼ã¿ãçªã£è¾¼ãã§ããã®ã«1ã«æåã®ãã¼ã¿ããåºã¾ããã
ãªãâ¦
ã¨ããããæªããããªç®æãä¸éãè¦ã¦ããã¨ãfrequencyã¨ãããã©ã¡ã¼ã¿ãããã¾ããã説æã¯ä»¥ä¸ã¨è¨è¼ããã¦ãã¾ããã
ãã¤ãã©ã¤ã³ã®å®è¡é »åº¦ã示ããªãã·ã§ã³ã®é »åº¦ã "Day"ã"Week"ãã¾ã㯠"Month" ããµãã¼ããã¦ãã¾ãã
è±èªã§è¦ã¦ãããOptional frequency indicating how often the pipeline is run. Supports "Day", "Week", or "Month".ã
ãã®ã¾ã¾ã§ãããããã¯ãã ã®ç£è¦ã®å®è¡é »åº¦ãªã®ã§é¢ä¿ãªãããã§ãã
â¦ã¨æã£ãããã®ããªããã¾ã ã¾ã ã§ããã
ããå®ã¯åååã§ãããã®frequencyãå¤ããã¨ãã¼ã¿ã®è¡¨ç¤ºæéãå¢ãã¾ãã
ãªããªãããã¬ãã¥ã¼ãã¼ã¸ã«ä»¥ä¸ã®è¨è¼ãããããã§ãã
ãå±¥æ´ãã¼ã¿åææã®æéç¯å²ã¯ãã¢ãã¿ã¼ã®é »åº¦è¨å®ã® 31 ééã¾ã§ã«å¶éããã¾ããã
ãªã®ã§ãå®è¡é »åº¦ãå¤ããã¨ãªããã¢ãã¿ã¼ã§è¡¨ç¤ºããããã¼ã¿ã®æéãå¢ãã¾ãã
ãã®ããã«ãããã¥ã¡ã³ãã«æ¸ãã¦ãããã¨ã§ã誤ã£ã¦ããå ´åãããã®ã§æ³¨æãå¿
è¦ã§ãã
ã¾ããããå
¬å¼ãåæã«è¨ã£ã¦ãã ããç¶æ
ã§ããã
ä¸è¨è¸ã¾ããã¼ã éçºã§çºçãããã¨
ä¸ã®ãããªããã¥ã¡ã³ããèªã¿ãªããããã¼ã éçºãããã¨ã©ããªããçããæ³åãã¦ã¿ã¦ãã ããã
æ¸ãã¦ãªããæ¸ãã¦ãããã¨ãéãããªããåããã¨ãããã¼ã å
ã§è°è«ããã¨ãç¥ãç¶æ
ã§ãã
ããã«ä»ã®äººããªããä¸ç¬è¦ããã¨ãããã©ã©ãã«æ¸ãã¦ãã£ããå¿ããã¿ãããªãã¨ã容æã«çºçãã¾ãã
èãã¦ããããæ¬å½ãã©ããããããªãã®ã§çµå±å®è¡ãããã½ã¼ã¹ã³ã¼ããèªãã ããã¦ã¿ãªãã¨ããããªã
ã¨ãããªã¼ãã¼ããããå端ã§ã¯ãªãéçºã楽ããã¾ãã
ã¾ã¨ã
ã¨ããããã§ãããªãã«è¦å´ããé£ããã£ã話ã§ããã
ããã¾ãæç¨ãªæ
å ±ãç¡ãã®ã§å
¬å¼ãé ¼ããããªãã®ã§ãããã®å
¬å¼ãçµæ§ãã¡ããã¡ãã§ããã
ã¾ãåãããã¤ãæ£ç¾©ã¨ããæè¦ã§é²ããã®ãæªãã¯ãªãã®ã§ãã
æ£å¼ã«ãªãªã¼ã¹ãã¦éç¨ããã¨ãªãã¨ãã©ããã¦ãã®è¨è¼æ¹æ³ãªã®ãã®ãªãã¡ã¬ã³ã¹ãæ®ãããã¯
ããªããã°ãããªãã®ã§ãèªåãå®è¡ãã¦ããã ã£ããã以å¤ã«èª¬æã®ãããããªãã®ã¯ã¤ããã§ããã
ãã ãã¾ã ãã¬ãã¥ã¼çã ã£ãããmlç°å¢ã®çºå±ãããããããã¹ãã¼ãã§é²ãã§ããã®ã§
ããããä»ã®ã¯ã©ã¦ãã«è¿½ãã¤ãã¬ãã«ã§çºå±ãã¦ãããã°ãããªã¼ã¨æããªãããä»ãåããã¦ãããã¨ã«ãªãã®ã§ãããããã
æå¾ã«ä¸è¨
ããããã«åæ¸ãã®ã¯ãããã
æµ·å¤æ è¡ in France ï½å¾æ¥è«ï½
æ
ã®çµããã®å¾ã«è²ã
ã¨èªãããåã§ãã
ååã¯ãã¡ã
shussy8.hatenablog.com
ãåæ¸ã
å°å ¥
ä½ã¨ãä»åãæ¸ãçµããã¾ãããããæ¬å½ã«æ¯åæ
è¡ã«è¡ããã³ã«ããã«æ¸ããæ¹ãè¯ãã®ã¯ããã£ã¦ããã®ã§ããã©ããã¦ãçãä¹ããªãã¨ããããªãã¨ããããè¡åãé
ããã§ãããã
ä»åã®æ
è¡ã¯3æ³4æ¥(å®éã¯ç§»åæéè¾¼ã¿ã§5æ¥)ã®æ
è¡ã¨ãªãã¾ãããä»æãè¿ãã¦ãä¸ç¬ã§ããã
æ¬è¨äºã§ã¯ãã®æ
è¡ã®ææ³ã¨ããå¾æ¥è«ã¨ããè²ã
æ¸ãã¦ã¿ãããã ã®èªå·±æºè¶³å(ä»ã¾ã§ãããã ã£ãããâ¦)ã§ããããããåã°ã£ããã«ãªãã¨æãã¾ãã
ä»åã®æ è¡ã®ææ³
ã¨ããããã§1å¹´è¶ãã§ããä»åã®æ è¡ã®ææ³ãæ¸ãã¦ã¿ããã¨æãã¾ãã
ã³ããã«ã¤ãã¦
ããæ¬å½ããã¤ã®ãããã§ãã¹ã¦ãçãããããã ã£ããã¯ã½ã¯ã½ã¯ã½ã¯ã½ããã³ãã¯ã½ãç¾å¨é²è¡å½¢ã§ã¯ã½ã
確ãã³ãããé¨ãã«ãªãã ããã®ã2019å¹´ã®12æããã ã£ãããªï¼ããããã ãã ãã¨åºã¾ã£ã¦ãããç§ãã¡ã«ãçµæ§ãªå½±é¿ãä¸ãã¾ããã
ãã®æ
è¡ã§ããã°é£è¡æ©ãä¸ææãã£ã³ã»ã«ã«ãªã£ã¦ãããªããªãããã«ãªã£ãã¨ãããã¨ã§ããããããã®æã¯æ¬å½ã«ã²ãã²ããã¾ãããã
æçµçã«6人ã§ç¡äºã«ãã©ã³ã¹ã§ã®æ
è¡ã楽ããã¦æ¬å½ã«è¯ãã£ãã§ãã
ç¾å°ãã©ã³ã¹ã«å°çããã¨ãã«ã¯ãã¢ã¸ã¢ã®äººã ããã¨ããçç±ã§ä½ãäºä»¶ã¨ãäºæ
ã®ãããªãã®ãããã®ã§ã¯ã¨æãã£ãã®ã§ããããããã£ããã¨ã¯ãªãç¾å°ã®äººã¯åªããåãå
¥ãã¦ãããããã«æãã¾ãã
ãããã©ã¡ããã¨ããã¨åºå¡ããã¯åªãããã©ãã¢ã¸ã¢äººã ããã¨ãããã¨ã¯ãªããããããã®ã¾ã¾ã®æ¥å®¢ã ã£ãã®ã§ãããããæ²»å®çã«ããã®ã¾ã¾ãä½é¨ãã¦ããã¨æãã¾ãã
ã¾ãå½æã®ãã©ã³ã¹ã§ããã¹ã¯ãçãã¦ãã人ã¯å
¨ãå±
ãªããç§ãã¡ããã¹ã¯ãä¸æ¥ãä»ãããã¨ãªã観å
ã楽ããã§ãã¾ããã
ãã©ã³ã¹ããæ¥æ¬ã®ãã¥ã¼ã¹ããã¾ã«ãã§ãã¯ãã¦ããã®ã§ãããæ¥æ¬ã®æ¹ãå½æã¯æµè¡ãæ¿ããã¦æ¯æ¥é¨ãã§ãã¾ããããå½æã¯å¸°ããã®ããªã¨ããä¸ç¬èãã¦ãã¾ãããç¡äºã«å¸°ãã¤ããæã«ã¯ã»ã£ã¨ãã¦ãã¾ããã
ããã¦ãç§ãã¡ã帰ã£ã¦ãã次ã®é±å½ããã«ãã©ã³ã¹ã§ã®æµè¡ãççºãã¦ããã¯ãã¦ã³ãªã©ãçºçãã¦ãã¾ããã
ä»æãè¿ãã¦ãæ¬å½ã«ã®ãªã®ãªã®æ
è¡ã ã£ããã ãªã¨æãã¾ãããããããã¨äººçæå¾ã®æµ·å¤æ
è¡ãªã®ãããããªãã§ããã
ããªã¨ããåå°ã«ã¤ãã¦
ããªã¯è¡ãåã¯ããããä½ããã©ãã©ãã¦ããã¤ã¡ã¼ã¸ã ã£ãã®ã§ãããå®éã«è¡ã£ã¦ã¿ãã¨è¯ãããªé¨åã¨ã¤ããé¨åãã¯ã£ããã¨åããã¦ãããããªæãã ã£ãã¨å人çã«æãã¾ãã
è¯ãããªé¨åã¨ãã¦ã¯è¦³å
åæãã¬ã¹ãã©ã³å
é¨ãªã©ã¯é常ã«ãããã«æ´åããã¦ãã¦ãã¨ã¦ããã®ç©ºéã«æ²¡é ã§ããããã«ä½ããã¦ãã¾ããããã¾ããè²ã
ãªå½ããã®è¦³å
客ãå¤ãã®ãããããã®å½ã«å¯¾ããæ¡å
ããã£ããã¨ãã£ã¦ãæ¥æ¬èªã§ã®æ¡å
ãå¤ãã£ãã§ãã
éã®é¨åã¨ãã¦ã¯ãæ¬å½ã«æ²»å®ãæªãã¨ããã¯æªãï¼ç§ã¯ä»¥åã¢ã¡ãªã«ã«ãè¡ã£ãã®ã§ããã©ã¢ã¡ãªã«ãããæ²»å®ã®æªããç®ã®å½ããã«ããæããããã¾ããããç®ã®åã§ãã³ã§åºããããã財å¸ãçã¾ãããã«ãªã£ã¦ãããã¨ãã¢ã¡ãªã«ã§ã¯èªåãã¡ã®ä¸æ³¨æã¯çµæ§ãã£ãã®ã§ãããä»åã¯è²ã
ã¨çµ¡ã¾ãããã¨ãå¤ããã³ã«ãªã£ãããã«æãã¾ãã
ããã¨ããã¨ãã¦ã¯ä»¥ä¸ã®ãããªæãã§ããã
- 飯ããããã
ããæ¬å½ã«ã飯ãããããã£ãï¼ã¬ã¹ãã©ã³ã®ã©ã³ãã ã¬ãã£ã¯ãã¦ããããã³å±ããã«ä¸¦ãã§ããã®ã¯ã©ããé£ã¹ã¦ãããããã£ãã§ãï¼ç¹ã«å¿ããããªãã®ã¯æ³ã¾ã£ã¦ããã¨ããã®è¿ãã«ãã£ããã³å±ã§è²·ã£ãã¨ã¯ã¬ã¢ãä»ã§ãããä¸åé£ã¹ãããããç¾å³ããã£ãã§ãããã¨ãã®ãããã§é©å½ã«è²·ã£ããã®ãæ¬å½ã«ç¾å³ããã§ãããã ã®ãã³å±ããã®ãã³ã§ããããããã®ã«ããã®ãããã®ã¹ã¼ãã¼ã§è²·ã£ãã¯ã¤ã³ãã¾ããããããããä½ãä¸å³ãã®ãã¨ãããããç¾é£ã«ããµãã¦ãã¾ãããã¢ã¡ãªã«ã¨ã¯éã£ã¦ãã¯ããããããç¹ç´°ãªå³ã®çµã¿ç«ã¦ãããã¦ããããã§ç¾å³ããã飯ãé£ã¹ããã®ã§ããã°ããªã¯ãå§ãã§ãã
- 観å åæã ãã
æ¬å½ã«è¸è¡ã®è¡ã¨ããã ããã£ã¦ãç¾è¡é¤¨ã観å åæãé常ã«å¤ãã§ãã1é±éå± ã¦ã飽ãã¯æ¥ãªãããããªãããªãã¨æãã¾ãããªã«ãä¸ã¤ä¸ã¤ã®è¦³å åæã大ããã®ã§ãããã ãã§1æ¥ã¤ã¶ããããªã®ã§ããã°ãããã¦ããããã飽ããªãã®ã§ã¯ã¨æãã¾ãã観å åæã ãã§ãªãããã è¡ãã¶ãã¤ãã ãã§ãæ¥æ¬ã®æ¥å¸¸ã§ã¯æ±ºãã¦è¦ããªããããªé¢¨æ¯ãè¸è¡ä½åãè¡ã®ãããã¨ããã«ããã®ã§ãã®ãã³ããããã½ãããã¨æãã¾ãã
éã«è¯ããªãã£ãã¨ããã¯ãããªæãã§ãããã
- æ²»å®
ããæ¬å½ã«æ²»å®ãæªãã£ããå人çã«ã¯ãã³ã§åºãããã®ã¨éå£ã§æ¼ãå¯ãã¦ããã®ã¨ãã¹ãªãç®ã®å½ããã«ããã®ã¨ãã¾ãè²ã
ããã¾ããæ²»å®ãæªãã¨ããã¯æ¬å½ã«æªãã¨ããã¤ã¡ã¼ã¸ãé常ã«å¼·ããªãã¾ããã
ãã¯ãæãã観å
客ãå¤ãéã¾ã£ã¦ããã¨ããã«ã¯ãããã£ã輩ãéã¾ã£ã¦ããã®ããããã¾ãããæ¬å½ã«èº«ã®å±éºãæãããã¨ãå¤ãã£ãã§ãã
å®å¿ã§ããã¨ããã¯å®å¿ãªã®ã§ãããå°ä¸éã®ãã¼ã ãè·¯å°è£ãå¤ã®çºãªã©å±ãªãã¨ããã¯æ¬å½ã«å½ãæãããã°è¡ãã¹ãã§ã¯ãªãã¨ãããå¤ãããã®ã§ãããããæå³ã§ã¯æ¬å½ã«ä¸èª¿ã¹ãéè¦ã ãªãã¨æãã¾ãã
- æéããã¾ãã«ãçãã£ããã¨
ããã¯æªãã¨ããã¨ãããã¾ãä»æ¹ã®ãªããã¨ãªãã§ãããæ¬å½ã«æéãç¡ãã£ãã弾丸ãã¢ã¼ã«ãªã£ã¦ãã¾ã£ã¦ããæãã§ããã
ããªã®ä¸ã§ã¯ãããã¨ããã観å
åæãããããããããã®ä¸ã¤ä¸ã¤ã1æ¥æ¬²ãããããå·¡ãã¦ãã¾ãã®ã§ãä»åã®æ
ãæ¬å½ã«æéãç¡ãã£ãããã«æãã¾ãã
ãªããããå°ãæéã«ä½è£ãããã°ä¸ã¤ä¸ã¤ã®è¦³å
åæããã£ããå·¡ã£ãããã®ãã³ããããã½ããæéãåããã®ããããã¾ãããã¾ãä»æ¹ãªãã§ãããã¾ã次åè¡ãã¨ãã®æ¥½ãã¿ãã§ããã¨ãã風ã«ã解éãã§ããã¨æãã¾ãã
æµ·å¤æ è¡ã¨ããä½é¨
æµ·å¤æ
è¡ãä¸åº¦è¡ã£ã¦ã¿ã¦ãããã¨æãã¾ãã
ç§ã¯ä»åã®ãã©ã³ã¹ã§2åç®ã ã£ãã®ã§ãããè¡ããã³ã«èªåã®åºå®æ¦å¿µã¨ããã価å¤è¦³ãå´©ãã¦ããã®ãå®æã§ãã¾ãããã¬ãã®ä¸ã§ããè¦ããã¨ãªãã¹ãªã®æå£ãè»ã®äººãéãæã£ã¦æ®éã«è¡ãæ©ãã¦ãã姿ãå°ä¸ã®ãã¾ãå ´ã«ããã¤ããããªãã¤ããã¼ã ã¬ã¹ã®ä¹é£ãªã©ããããã£ãæ¥æ¬ã§ã¯çµ¶å¯¾ã«å³ãããªãã¨æãããã¨ãããã§ã¯å¹³ç¶ã¨èµ·ãã¦ãã¾ããããããããããããã®åå°ã®äººãã¡ã«ã¨ã£ã¦ã®æ¥å¸¸ãªãã ã¨æãã¾ãããããã£ãã¤ããä½é¨ãéã«ä¸ççã«æåãªã¨ããã«èªåã®è¶³ã§èµ´ããä½ããæããã¨ããã®ãæµ·å¤æ
è¡ã§ããå³ãããªãééå³ã§ãã
ãªã®ã§çãããèå³ãããã®ã§ããã°ãããããä¸çã«é£ã³è¾¼ãã§ã¿ã¦ãããã®ã§ã¯ã¨æãã¾ãããããããããèªåã®å½ã ãã¯æåªå
ã§ãé¡ããã¾ãã
ã¡ãªã¿ã«ãªã®ã§ãããä»åã®æ
è¡ã®äºç®ã大ä½20ä¸ãããã ã£ãããªï¼ã¨æãã¾ãããããããããã°åå楽ããã¾ããã
å®ã¯ã¿ã¤ãã³ã°çã«è²ã ã¤ããã£ã話
ä»åã®æ
è¡ã¯æéçã«ããããªæå³ã§ã®ãªã®ãªã ã£ããã ãªãã¨æãã¾ãã
ã¾ãã¯ã³ãããå
ã»ã©ãæ¸ãã¾ããããç§ãã¡ã帰å½ãã1é±éå¾ãããã«ã¯ãã©ã³ã¹ã¯ã«ã¼ãã«ãã¯ããã¨ãã観å
åæãå
¬éåæ¢ãããã¦ãã®ã¾ã¾ææççºãèµ·ããããã¯ãã¦ã³ããã¨ãããã¨ã«ãªã£ã¦ãã¾ãããæ¬å½ã«ã®ãªã®ãªã ã£ããã ãã¨æãã¾ããä¸æããããã®ã¾ã¾å¸°ã£ã¦ãããªãã£ãããâ¦
ã¾ããããã¨ã¯å¥ã«ç§ãã¡ã1æ¥ç®ã«è¡ã£ãã¨ããã§ã«å¡ã®è¿ãã®åºå ´ã§è¦³å
客ã®æ®ºäººäºä»¶ãèµ·ãããããã¦ãã¾ãããã®åçãè¦ãã¨ç§ãè¦ããã¨ããå
æ¯ã ã£ãã®ã§æ£ç´è¡ã®æ°ãå¼ãã¾ãããããã¨ä¸é±éããã¦ãããæ¬å½ã«ã¤ããã£ããã ãªãã¨æãã¾ããæ¬å½ã«ã©ããã¼ã§ãããæ»ãªãªãã¦ããã£ãã
ããã£ã観å åæbest3
ããã§ã¯å人çã«è¯ãã£ã観å
åæbest3ã決ãã¦ã¿ããã¨æãã¾ããæ£ç´æ±ºããããªãã®ã§ããâ¦
- 3ä½ï¼ã«ã¿ã³ã³ã
2æ¥ç®ã«è¡ã£ã人骨ã§ä½ã£ãæ´çªã§ããããªãã¨ããã人骨ããè¸è¡ã«ãã¦ãã¾ãã®ã¯æµç³ã ã¨æãã¾ãã涼ããã§ãããæ®æ®µã®ãã©ã³ã¹ã¨ã¯ã¾ãéã£ãä½é¨ãã§ããã®ã§ãå§ãã§ãã
- 2ä½ï¼å±æéé ä¸
1æ¥ç®ã®å¤ã«è¨ªããã¨ããã§ããã·ã£ã³ã¼ãªã¼éãã®è¡è·¯ç¯ãè»ã®å ãããããã®ãä¸ããçºããã®ã¯çµ¶æ¯ã§ããè¡ãã¨ãã¯æ°ãä»ãã¦ãã ãããã
- 1ä½ï¼ã´ã§ã«ãµã¤ã¦å®®æ®¿
å人çã«ã¯ä¸çªè¯ãã£ãã¨æãã¾ããæ¥æ¬ã§ã¯çµ¶å¯¾ã«å³ãããªããã®ç©ºéãããã³ãããªé°å²æ°ãåç©é¤¨ã¨ãåç©åã®ãããªãã®ãªãæ¥æ¬ã§ãã®ãªã®ãªå³ãããããªã®ã§ãããå½æã®å»ºç©ãã®ã¾ã¾ã¨ããã®ã¯ããã§ããå³ãããªãã®ã§ã¯ãªãã§ããããããã£ã¨é ããé ã¾ã§æ¢æ¤ãã¦ã¿ãããªãã¨æãã¾ãã
ããã£ããåç£
æå¾ã«å人çã«è¯ãã£ããåç£ãæ¸ãã¦ããã¾ããããè¡ã人ãããã°åèã«ã§ã
- ã¯ã¤ã³
ãã©ã³ã¹ã®ã¯ã¤ã³ã¯ãã®ãããã®ã¹ã¼ãã¼ã§å£²ã£ã¦ããç©ã§ããé常ã«å®ãã¦ããããã®ã§ãé©å½ã«2,3æ¬è²·ã£ã¦å¸°ããã¨ããå§ããã¾ããä»ã®æ³å¾ã ã¨900ml以å 3æ¬ã¾ã§ã¯okãããã§ããå®éç§ãã¾ã 1æ¬å¯ããã¦ããã¾ãããã¤é£²ããã楽ãã¿ã§ãã
- ãã©ã¢ã°ã©ç¼¶
ãã®ãã©ã¢ã°ã©ããã£ã·ãã¨è©°ã¾ã£ã缶詰ã§ããæ¥æ¬ã ã¨å£ã«ããã®ãé£ãããã§ãããç¾å°ã ã¨å®ããã®ã§1缶1000åã»ã©ã§è²·ãã¦ãã¾ãã¾ããããã¦ãã®å³ããã¤ã§ãé£ã¹ãããã¨ãªãã¨ã¨ãããã1缶ãããè²·ã£ã¦ããã¦ããã¨æãã¾ãã
- ç³é¹¸
ããã¯èª°ãåãã®ãåç£ã¨ãã¦ã¯ã¨ã¦ãé©ãã¦ããã¨æãã¾ããã¾ãç´ã«å ã¾ãã¦ããç¶æ ã§ãã§ã«ã¨ã¦ãããã«ããããã¦ããã®ã§ãã¢ããã¨ãã¦ã使ãããã§ããããæ¬å½ã«ããã«ããããã¾ãã3åå ¥ãã¨ãã»ããã§è²·ã£ã¦ããåç£ã¨ãã¦æ¸¡ãã°åã°ãããã¨ééããªãã§ãã
- è¡£æãªã©æ®æ®µèº«ã«çãããã®
æã¯æ¬å½ã«è²·ã£ã¦ããã£ãã¨æãã¾ããæ®æ®µãã身ã«çãããã®ã£ã¦ãã£ã±ãæçãããã¾ãããã¡ãã£ã¨å¨ãã®èªæ ¢ã«ããªãã¾ããæããã©ã³ãç©ã§ãä¸è³ªãªãã®ãå®ãã§ãããè²·ã£ã¦ããã¦æã¯ãªãã¨æãã¾ããå人çã«ã¯æè¨ããæ°ã«å ¥ãã§ããæ¯æ¥ã¤ãã¦ãã¾ãã
ã¡ã³ãã¼ã®ææ³
ããã§ã¯ä»åä¸ç·ã«æ è¡ã«è¡ã£ã¦ãããã¡ã³ãã¼ã®ææ³ãä¸ç·ã«ã®ãã¦ã¿ããã¨æãã¾ãã
- KK
ãæ³ã¾ã£ãã¢ãã¼ãã
æ è¡ä¸ãã£ã¨ãä¸è©±ã«ãªãã¾ããã
ã飯é£ã¹ãå¾ãã¿ããªã§ãã©ãã©éãããã®ã¯ããã«ã«ãªãè¯ãã ãªã¨æãã¾ãã
ããµã¯ã¬ã¯ã¼ã«å¯ºé¢ã¨ã´ã¡ã³ã·ã§ã¼ã
漫ç»ã®å½±é¿ã§ãã£ã¨èå³ãã£ãã´ã¡ã³ã·ã§ã¼ã飲ãã¦æºè¶³ã
ã¢ã³ãã«ãã«ããçºããããªã®è¡ä¸¦ã¿ãç¾ããããã£ã¨ããã«å± ããã¨æã£ãã
ãã¸ãã·ã¼è¥²æ¥ã
âã®ç´å¾ã«çºçããã´ãã¤ããä¸å»ãæ©ã帰å½ãããã¨æã£ãã
ã¢ãã¼ãã«é¢ãã¦ã¯æ¬å½ã«è¯ãã£ãã§ãããé©åº¦ã«åºãã¦é¨ãã§ã大ä¸å¤«ããã§ãããä½ããèªç±åº¦ãæ¬å½ã«é«ãã£ãã§ããå½¼ãæ¸ãã¦ããéããããã«ã使ããä»åã¯æ°å®¿ã使ç¨ãã¾ãããã¯ããã¯æ²»å®çãªåé¡ã¨ãããµãã¼ãçãªåé¡ã¨ãã§æãã£ãã®ã§ãããä»æãè¿ãã¨æ°å®¿ã§ããã£ããªãã¨æãã¾ãããã®ã ãã ãã§ããæããè¯ãã£ãã
ãµã¯ã¬ã¯ã¼ã«å¯ºé¢ã¯KKã®ææ¡ã§è¦³å
ããã®ã§ããããããããªã¨ããæãããã¦ããã£ãã§ãããåºãåºå ´ã«ç»å®¶ãè²ã
油絵ãæãã¦ããæããè¸è¡ã®è¡ã¨ããæããä¸å±¤é¸ãåºãã¦ãã¾ããã
ãã®ææ¡ãç¡ãã£ãã観å
åæãå·¡ã£ã¦çµãã£ã¦ããå¯è½æ§ãããã®ã§ãããããããããªè¡ä¸¦ã¿ãæ¢æ¤ã§ããã¨ããçµé¨ãããã¦ããã ããKKã«æè¬ã§ãã
ã¸ãã·ã¼ã¯â¦ã¾ããâ¦
- AH
ã»éå£ã¢ã³ã±ã¼ããã°ããvs主ã«SKï¼
ã»å°ä¸éã®ã¹ãªï¼å人çï¼
ã»ãã£ãã«
ã»ãã©ã¢ã°ã©ããã
éå£ã¢ã³ã±ã¼ãã«é¢ãã¦ã¯ã¾ãSKããã®æã«æ¸ãã¾ãã
å°ä¸éã®ã¹ãªã¯ç§ã¯ãã å観ãã¦ããã®ã§ãããé£ãã£ãæ¬äººããããã¨ãã¾ã£ããããããªãã¨æãã¾ãããæ¬å½ã«æãã£ãã¨æãã¾ããè¦ã¦ããã£ã¡ãæãã£ãã§ããããååãã«ã¨ãããã°ããçµé¨ã«ãªã£ãã¨â¦ã
ãã£ãã«ã¯åæ¥ã«è¬ã®æ¥æ¬èªã§æ¸ãããç´ãè¦ã¤ãã¦ããããã£ã¨èª°ãããã¯ãªã¹ãã¹ãã£ãã«ã®é ã«ã¯ãã¨ããæãæã£ããæ°å®¿ã§æµãããç¶ãã¦ãããããã§ãä»åã®æ
ã®ãã¼ãã½ã³ã°çã«ãªãã¾ããããããæ¬å½ã«è¬ãªãã§ãã誰ãä½ã®ç®çã§æ¸ãããã§ããããããã
ãã©ã¢ã°ã©ã¯æ¬å½ã«ç¾å³ããã£ãï¼ç§ãä¸å£äºå£ãããåãã¦ããã£ãã®ã§ããã人çã§åãã¦é£ã¹ããã©ã¢ã°ã©ã®ãã®æ¿åã§ã¯ãªã¼ãã¼ãªå³ï¼æ¬å½ã«ç¾å³ããã§ãããã³ã«ã¤ããã°ç¡éã«é£ã¹ããããªãããç¾å³ããã£ãã§ãããããä¸åé£ã¹ãããªãã
- SK
ãã¼ã«ãã³ãã¯ããã
ããã¯ããã§ããã1æ¥ç®ã«ã¨ããã§ã«å¡ã®å¨è¾ºã§ã¢ã³ã±ã¼ãã¨ç§°ããä½ããä»æãã¦ãããã°ãããã¡ã«è²ã
ãããã件ã§ããã
主ã«è¢«å®³è
ãSKã¨ç§ã§ãç§ã¯æãç¶ãã¦ããã赤è²ã®ãã³ã§æãããããSKã¯ãã¾ãã«ããã¼ã«ãã³é æ´ã¨è¨ããç¶ããããã§ä¸æ¬ãã¼ã«ãã³ããããã¨ããæãã§ãã
ã¾ãå®å®³ã¯ãã®2件ã ãã ã£ãã®ã§ãããããã§ãååã¤ããäºä»¶ã§ããããã¨ããã§ã«å¡ã®ã¤ã¡ã¼ã¸ã奴ãã®ããã§ãã¾ããããªããã®ã«ãªã£ã¦ãã¾ã£ãã®ãäºå®ã§ããã観å
客ãããã¦çªé²ãã¦ãããã¼ã姿ã®ãã°ã¡ãããã¡ã«ã¯æ°ãä»ãããã¨æãã¾ãããã
- TT
ç·æ¬
è¸è¡ã®é½ããªã®å ã¨éãä½é¨ã§ããæ ã ã£ãã
身å ã«è©±ããããèªåã¯ãã¨ããã¡ã³ãã¼ã¨æ¯ã¹ã¦ãã身å ã®å¯¾çã¯ç²éãªãã®ã ã£ãã®ã«ããããªãã¨ãããªãã£ãã£ã¦ã³ã¡ã³ããããã£ãã解ãã¬ãä½èª¿ä¸è¯è ãåºãªãã£ããã¨ã
ï¼çµç¤èªåã®ä½èª¿ãè¥å¹²æªããã£ããã¨ãé¤ãã°ãï¼ä¸äººãä½èª¿ãå´©ãã帰å½ã§ãããã¨ã¯ãã¾ãåã¶ãã¨ããªã¨ãã´ãã¤ãå¤æ°
æ£ç´ãåå°çã«æµæãã¦ãã¾ã£ãæã¯åºããããã¨æã£ããã¾ããå¾ã§åºãããã®ã¯å¥ã®äººãªãã§ããã次ä¼ã£ãæè¦æãã¦ããããã®ã¢ããºã¬ããµã³ã°ãªã¢
æ£ç´èãã¦ãããã£ã¡ãç¾å³ããã£ãå ¨ä½çã«æéãçã
å¤åã弾丸ã§è¡ãå½ã§ã¯ãªããªã¨æã£ããä¸ã¤ã®æ½è¨ã«è¦æãããããããã®ã§ã次åã¯ããå°ãä½è£ãæã£ãæ ç¨ã§è¡ããããå ¨ä½çã«é£è²»ãé«ã
ç¾å³ãããããããã©ãå¤è²¨ã§ééæè¦ãéã£ã¦ããã¨ãåããã£ã¦ãä¸é£ã«ããããéãã¾ãã¾ããããé£è¡æ©ã¯ã±ãããªã
ååã®ã¢ã¡ãªã«æ è¡ã®æã¯ãã£ã¤ãã ã£ããã©ãä»åã®ã¨ã¼ã«ãã©ã³ã¹ã¯ãã¸ã§å¿«é©ã ã£ãããä½ããæ°åº¦ãé«ãã£ããæ £ããªãåå°ã«è¡ãã®ã§ãä½åã¨å®å ¨ã¯éã§ç¢ºä¿ããã®ãåã¨å確èªãä¸å½ã®ãã©ã³ã¸ããã¯ããäºåº¦ã¨ãããããããæ°æ³å©ç¨
ããªããã£ã¬ã³ã¸ã ã£ããã©ãéãªé£²ã¿ä¼ã¨ããå¤ã¾ã§é¨ãã§ãä½ãè¨ãããªãç°å¢ã¨ããä¸å®é使ã£ããæ°´ãåºãã·ã£ã¯ã¼ã¨ãã¤ãã³ãã«äºæ¬ ããªããã使ã£ã¦ããã£ãã¨æãã
TTãæ¸ãã¦ãããããã«ãã¾ãè¯ããæªããè²ã
é¢ç½ãã¤ãã³ããèµ·ããæ
è¡ã§ãããããããã®ã¡ã³ãã¼ã ã¨çµ¶å¯¾ä½ãããèµ·ããã®ã§é£½ãã¯ãªãã¨æãã¾ãã
ä½èª¿ä¸è¯è
ãåºãªãã£ããã¨ã¯ãã¿ããªå¹³åã«çµãã£ã¦ï¼å¿ãã¦ããã®ããããã¾ããããæ¬å½ã«å¤§åãªãã¨ã§ãããåã°ãããã¿ããªèã¯ä¸å¤«ãªãã§ãããã(ä¸äººãé¤ã)ãå½ãã£ã¦ã®ç©ç¨®ãªã®ã§ããããã¦çãã¦å¸°ã£ã¦ããã¦æ¥å¸¸ãéããããã¨ã¯æ¬å½ã«ãããã¨ã ã¨æãã¾ãã
è²»ç¨ã¯ãããã°ãããã»ã©ã¾ãæ
è¡ã®ã¯ãªãªãã£çã«ã¯é«ããªãããã§ãããããã¯ã¡ã³ãã¼ããããããã¨ã¨ç¸è«ã§ãããå人çã«ã¯ç¾å°ã®ç¾å³ãããã®ãä½é¨ãã§ããã®ã§ããã°ãã¡ãã«ãéãããã¦ã移åæ¹æ³ã«é¢ãã¦ã¯ãã¾ãæ°ã«ããªãæããããã®ã§ãããããã¯äººã«ãã£ã¦ãã ãããåºã¦ããã®ã ã¨æãã¾ããã§ãããããªæå³ã§ä»åã¯ä¸å½ã®ç©ºæ¸¯ã¯ä½¿ããããªãã£ãã§ãã
æ°æ³ã¯ä»åæãåã£ã¦ãã£ã¬ã³ã¸ãã¦ã¿ã¦è¯ãã£ãã¨ç§ãæãã¾ããããæ¬å½ã«ããããã§ããã®ã楽ããã®ã§å¿ççãã¼ãã«ã許ããªãã°ãå§ãã§ãã¾ããã
- SY
観å å°çã«ã¯å±æéãã¤ã³ãã¯ããããå¤ã¯ã©ã¤ãã¢ããããã¦ã¦ããã£ã
ç©ä¹ãããã£ã±å°è±¡æ·±ããªãSKã®ãã³äºä»¶ã¨ããTTã®è²¡å¸ã«æãçªã£è¾¼ã¾ããã®ã¯æ®éã«ãã¹ããªããã£ã¦æã£ãã
å±æéã¯å人çã«ç§ãããã£ãã¨æãã¾ããæ¼éã¯ä¸ããè¦ã¦è¦³å
ããå¤ã¯é ä¸ã«ä¸ã£ã¦å¤æ¯ãçºãã¾ãããç¹ã«å¤ã®ã¦ã£ãºãããè¦ããã©ã³ã¹ã®å¤æ¯ããã©ãã©ã¨ãããã¦ãã¦ãã¨ã¦ãæåçã ã£ãã®ãå°è±¡æ·±ãã§ããã
å¾ã¯ç©ä¹ãã¯ä»åæ£ã
è¦ããããã¾ãããããããã§æ
ã®æå¾ã®æ¹ã«ãªãã¨ãããã£ãéå£ã«è¿ã¥ããã¨ããå«ã«ãªãã¾ãããããã
次ã«è¡ãããã¨ãã
次ã«è¡ãããã¨ããããªãã¨ãªãæ¸ãã¦ã¿ã¾ãã
ãã©ã³ã¹ã¯ã¾ã ã¾ã 楽ããã¦ããªãã¨ãããããã®ã§ããä¸åº¦è¡ã£ã¦ã¿ããã§ãã
ãã©ã³ã¹å
é¨ã§ããã°ãããªå¸å
ã¯çµæ§æ¥½ããã ã®ã§ããªå¸å¤ã«è¡ã£ã¦ã¿ããã§ãããã³ã«ãã¼ã«ã¨ãã第2ã®ã´ã§ããã¢ã¨å¼ã°ãã¦ããé½å¸ããããããªã®ã§ãã¡ãã«ãè¡ã£ã¦ã¿ãããããã¨ã¯ã¢ã³ãµã³ããã·ã§ã«ã訪ãã¦ã¿ãããªãã¨æãã¾ããããªå¸å
ã§ããä»åå®å
¨ã«ã¯åãåãã¦ããªãåæãã«ã¼ãã«ç¾è¡é¤¨ã«ã¯ãã²ã¨ãåã³è¶³ãéã³ããã§ãã
ãã以å¤ã®å½å¤ã¨ãªãã¨ãå人çã«ã¯ã¹ãã¤ã³ãã¤ã®ãªã¹ã«è¡ã£ã¦ã¿ããã§ãããã¾ãã©ããªãã³ã«ãªãã®ãã¯ãããã¾ãããã
æå¾ã«
ã¨ããããã§ãã©ã³ã¹æ
è¡è¨ã§ãããçãããããã§ããã§ãããããã¾ã ã¾ã å®ã¯æ¸ãããã¦ããªãã¨ãããç´°ããæåãªã©ãããã®ã§ããããã¯ã¾ãããæ°ãããã°æ¸ãã®ããããã¾ããã
次ã«ã¾ãæµ·å¤æ
è¡ã«è¡ããã¨ãããã°ç¬¬3å¼¾ãã§ããã®ã§ãããæããã¦ããã¯ãã¤ã«ãªãã®ããâ¦
è²ã
æ
è¡ã¨ãã§ãã«ãããã®ãæä¸ã§ãããã¾ãã¯ä»åã®é¨åãåã¾ãã¾ã§ã¿ããªã§ååãã¦é å¼µãã¾ãããã
ããã¦ãåã³ä»åã®ãããªæ
è¡ãä½ã®ãããã¿ããªãèªç±ã«ã§ããä¸ã®ä¸ã«åã³ãªããã¨ããç¥ããã¾ãã
æµ·å¤æ è¡ in France ï½4æ¥ç®ï½
æå¾ã¯ä¸æ°ã«çµãããã¾ãããï¼4æ¥ç®ã§ãã
ååã¯ãã¡ã
shussy8.hatenablog.com
ãåæ¸ã
æãã¯ã
æèµ·ããã¨ã¨ããããKKã¨SYããã§ã«æãã¯ããé£ã¹ã¦ããã®ã§ãæ®ãã®ç§ãã¡ãæããã¾ããã³å±ããã«æãã¯ããé£ã¹ã«è¡ããã¨ã«ãã¾ããã
ä»åã®æãã¯ãã¯è¿ãã«ãã2ã¤ç®ã®ãã³å±ããã«è¨ªãã¦ã¿ã¾ãããããã§ãã¤ãã®ããã«ã¯ãã¯ããµã³ã¨ãã§ã³ã¬ã¼ãã®ãã³ãé ¼ã¿ã¾ããã
ãã®é¢¨æ¯ãè¦ãªããæ£æ©ããã®ãæå¾ããªãã¨æããªããæ©ãã¦ããã®ãè¦ãã¦ãã¾ãã訪ãããã³å±ããã¯ãã¡ã
ããã¦æ°å®¿ã«å¸°å®
ããããã£ã¨æãã¯ããããã ãã¾ããããã¯ãã©ãã®ãã³å±ããããã³ããã¡ããã¡ãããããã§ããã
ãã®å¾ãç§ã¨TTã¨SYã§ã«ã¼ãã«ç¾è¡é¤¨ã«ããã以å¤ã®3人ã§ã¯ã¤ã³ãè¦ã«è¡ãã¨ã®ãã¨ã§ãå¥ãã¦è¡åãããã¨ã«ãã¾ããã
ã«ã¼ãã«ç¾è¡é¤¨
å ¥å ´ã¾ã§
ãã¦ãå¥ãã¦è¡åãå§ãã¦ãã«ã¼ãã«ç¾è¡é¤¨ã«å
¥ãã¾ãããã«ã¼ãã«ç¾è¡é¤¨ã®æ£é¢ã²ã¼ãã¯æ¨æ¥ãè¦ãã®ã§ãããæ¹ãã¦ã¿ãã¨ãã¯ã大ããã¦æ´å²ããç¾è¡é¤¨ãæãããã¾ãã
ã¨ããããç¾è¡é¤¨ã®ã²ã¼ãããããããã®ã¾ã¾å
é¨ã«å
¥ãã¨ããã®æåãªã«ã¼ãã«ãã©ããããè¦ãã¦ãã¾ãããè¿ããéã£ãæã«ã¯ä½åãè¦ãã¦ããã®ã§ãããæ¹ãã¦ã¿ãã¨
ã¨ã¦ãããããªå»ºé ç©ã§ãããããã¦ãããã«ã¼ãã«ç¾è¡é¤¨ã®å
¥å£ã«ãªã£ã¦ããã®ã¯ã¨ã¦ãããããã§ããã
æææ¥ã®ææ©ãã¨ããã®ã«ãããé·ãè¡åãã§ãã¦ãã¦ãå¶éæéã決ã¾ã£ã¦ããç§ãã¡ã¨ãã¦ã¯éã«åãã®ãã¡ãã£ã¨ã³ãã³ãããªããå¾
ã£ã¦ãã¾ããã
ã«ã¼ãã«å é¨
ããã§ã30åã»ã©ã§ä¸ã«å
¥ããããã«ãªãã¾ãããæµç³ã®å転çã
ã¨ããããã§ã¬ã©ã¹ã®ãã©ãããã®å
é¨ã«å
¥ãã¨ãããã¯åºã空éãåºãã£ã¦ããããããã¨ã¹ã«ã¬ã¼ã¿ã¼ã§ä¸ã£ã¦ããã¾ããã
ä¸ã¯å·¨å¤§ãªç©ºæ´ãåºãã£ã¦ãããã¯ããã¯ã©ãã«è¡ãã°ããã®ããããã¾ããã§ããããã¨ãããããã±ãããè²·ãã«è¡ãã¾ããããã®æç¹ã§æ®ãäºæéåã»ã©ã ã£ãã®ã§ãé³å£°ã¬ã¤ããç¨æããã¦ããã®ã§ããããã¯ä½¿ãããèªåã®è¶³ã§è²ã
ããããã¨ã«ãã¾ããã
å¶éæéãéããã¦ããã®ã§ããã£ããã¨åãæéããªããæåãªã¨ããã ããããã¤ã¾ãã§ã¿ããã¨ã«ãã¾ããã
ããããã¯åçã®ä¸ããæãåºæ·±ããã®ã ãããç´¹ä»ãã¾ãã
ã¢ããªã¶
ãã¯ãã«ã¼ãã«ç¾è¡é¤¨ã¨è¨ãã°ã¬ãªãã«ããã´ã£ã³ãã®ã¢ããªã¶ã§ããããã¨ããããã§ä¸çªæåã«ã¿ããªã§è¦ã«è¡ãã¾ããã
ä¸çã§æãè¦ããã¦ããçµµç»ã¨ãããã¨ãããå¾
ã¡è¡åããããªãã®é·ãã§ããã
è¦ãã¨ãªã«ãèµ·ããã¨ããç®ç·ãã¤ãã¦ããã¨ãè²ã
ãªããããããã¾ãããå®éã«è¦ã¦ã¿ãã¨ç´ æ´ãªçµµæã§æ¸ããã¦ããç¾ãã女æ§ã¨ããæãã§ããã
ãã®çµµãã©ã®ãããªé
åãããã®ãæ£ç´è¨ãã¨è¸è¡ã®ä¾¡å¤ããã¾ãããããªãã®ã§ãã¾ãã¡ãããã¾ããã§ããããä¸çã§ä¸çªæåãªçµµãè¦ãã¨ããå®ç¸¾ã¯è§£é¤ã§ããããªã¨æãã¾ãã
ãµã¢ãã©ã±ã®ãã±
ç§ãçµæ§æ¥½ãã¿ã«ãã¦ããè¸è¡ä½åã§ããæç¾è¡ã®ææ¥ã§ç¿ã£ãã®ã§ããããã®å½¢ã¨ãããé ãåãã¦ããã¨ããã¨è¨ããç¾è¡ã®æç§æ¸ã§å¯ä¸è¦ãã¦ããè¸è¡ä½åããããã¾ããã
å®éã®é
ç½®å ´æã¯é段ããããã¼ã«ã®ä¸å¤®ã«é£¾ããã¦ããã®ã§ããããã®å¤§ãããç«æ´¾ãªé å½¢ã«ãã°ããè¦ã¨ãã¦ãã¾ããã
ãã ããã£ãã誰ãä½ã®ããã«ä½ã£ãç©ãªã®ãã¯è¦ãã¦ãã¾ããã
ããã¬ãªã³ä¸ä¸ã®é¨å±
ããã¬ãªã³3ä¸ãä½ãã§ããé¨å±ã¨ããã宮殿ãåç¾ããããå½æ使ããã¦ãããã®ããã®ã¾ã¾é£¾ã£ã¦ããã¹ãã¼ã¹ã§ãã
ããã§ã¯ã´ã§ã«ãµã¤ã¦å®®æ®¿ã¨ã¯ã¾ãéã£ã¦ãããã«è±ªè¯çµ¢çã«ããå
è£
ããã£ã¢ã©ãªã©ã飾ããã¦ããããã®1å1åãã¨ã¦ããããã§ããã
æéã®é½åä¸ãé§ãå·¡ã£ã¦ãã£ããè¦ããªãã£ãã®ã§ãããåã³è¡ããã¨ãããã°ãã£ããè¦ããã§ãã
ãã³ã ã©ãæ³å ¸
ãç®ã«ã¯ç®ãæ¯ã«ã¯æ¯ããã§æåãªãã³ã ã©ãæ³å
¸ã§ãã
å®éã«è¦ã¦ã¿ãã¨ãè£é¢ã«ã¯åãã³ã£ããæ¸ãã¦åã£ã¦ãæåãªã¨ãã以å¤ã«ãåè¨ãå«ã¾ãã¦ããã®ããªãã¨æãã¾ãã
ãã ãã¡ãã£ã¨åãç´°ãããã¦ããã®ããã«è¦ãã¦å°ãæ°æã¡æªãæããããããâ¦ã
ã«ã¼ãã«ã®å¤ã¸
æéãå°ãªããªã£ã¦ããã®ã§ãåç£ãè³¼å
¥ãããã¨ããã売åºã«è¡ãã¾ããã
ããã§ãã¤ãã§ãªã®ã§ãæã使ãåãããã£ãã®ã§ããããæã大ãããã®ãããªãå°ãå°ãã¾ããã
å¤å½ã§ã¯æ²»å®ã®æªãããã¬ã¸ã«ãéãç½®ãã¦ãããã¨ãå°ãªãã大ããé¡ã®ãæã¯æã¡æ©ãã®ããå«ã ã¨æããã¦ããã®ã§ããããã£ãã¬ã¸ã®å£²åºã§ãéãå´©ããã¨ãé£ããã®ã§ãã
ããããã©ããã¦ã使ãåãããã£ãã®ã§ä½¿ã£ã¦ãããï¼ã¨èãã¨ããã¤ããåºãªãããã«ãã¦ããããªããããã¨è¨ã£ã¦ãããã®ã§ç¡äºã«ãæãå´©ããã¨ãã§ãã¾ããããããã¨ããããã¾ãã
ããã¦å¤ã¸åºããã¨æã£ã¦ããã®ã§ããããããã«ã¼ãã«ããªãã¨ãããæ¬å½ã«åºããã¦åºå£ãã©ãã«ããã®ãããã£ã±ãã§ããã
å
ã»ã©ã¾ã§ç¾è¡é¤¨ã®ä¸ãé§ãåã£ã¦ããã®ã§ãããä»åº¦ã¯åºå£ãè¦ã¤ããããã«è²ã
ãªã¨ãããé§ãå·¡ã£ã¦ãã¾ããã
ãã£ã¨ã®ãã¨ã§å°ä¸ããåºããããªã¨ããããããå°ä¸ã«åºãã®ã§ããããã®éä¸ã§è¬ã®é»äººã®ãå
ããã«ããã±ãããåºããã¨è¨ãããã®ã§ã¨ãããããã®äººã«ãã±ããã渡ãã¾ããã
ç¡äºã«åæµã§ããã®ã§ãããä¸ç·ã«ããSYãTTã¯ãã®ãããªãã±ããã®ååã¯ãªãã¨è¨ã£ã¦ãã¦ããããããã®ãã±ããã§åå
¥å ´ããã¦ã¹ãªãè¡ãããããªããã¨ãã話ã«ãªãã¾ããã
æªæ°ãç¡ãã¨ã¯ããç¯ç½ªã®çæ£ãæ
ãã ãã¨ã«å®è³ªãªã£ã¦ãã¾ãã®ã§ããã§ããã®ãããªãã¨ããããã ãªãã¨å°ãã·ã§ãã¯ã§ããããã¯ãæ²»å®ã¯æã£ã¦ããããæªãããã§ãã
帰å®
ä¸åº¦ä¸å®¿å
ã¸æ»ã£ã¦ããã®ã§ãããå¥ãã¦è¡åãã¦ãã3人ã¯ã¾ã 帰ã£ã¦ãã¦ãã¾ããã§ãããããã©ãããé³ä¿¡ä¸éç¶æ
ã«ãªãå¿é
ãã¦ãã¾ããããªããªãé¨å±ã®éµããã®3人ãæã£ã¦ããã®ã§
æ©ã帰ã£ã¦ããç§ãã¡ã¯å®¶ã«ãå
¥ãããã®ãããããããããããããªãã£ãã®ã§ããããæ¬å½ã«ä¸å®ã§ããã
ãã®ãã¨é£çµ¡ããããéè·¯ãæ··ãã§ãã¦ã¡ãã£ã¨é
ããã¨ããé£çµ¡ãå
¥ã£ãæã«ã¯æ¬å½ã«ã»ã£ã¨ãã¾ãããããã¦ãã®è¶³ã§å¸°ã£ã¦ããã¾ã§ã®éãã³å±ããã«è¡ã£ã¦æå¾ã«ããã¤ãé£ã¹ããã¨ã«ãã¾ããã
ç»è£½ããããµã¼ã¢ã³ãæã¾ã£ããã³ã ã£ãã®ã§ããããã¯ãä½ãè²·ã£ã¦ãããããã§ããã
ããã¦ç¡äºã«ãããã¦è¡åãã¦ãã3人ã帰ã£ã¦ãã¦ãæ¥ãã§è·æ¯åº¦ãå§ãã¾ããããã®æãã§ã«ãã§ãã¯ã¢ã¦ãã®æéã¯éãã¦ãã¦ããã£ãã¨æã渡ããããå¿
è¦ããã£ãããã§ãã
ãããªæãã§å±
ãã¨ã家ã®çé¢ã®æãéé ããçªç¶éããè¬ã®äººãå
¥ã£ã¦ãã¾ãããã¯ããã¯æ¬å½ã«ä¸å¯©è
ãå
¥ã£ã¦ããã®ãã¨æãã¾ããããã©ãããé¨å±æé¤ããã«æ¥ãããã§ã
ãã£ãã¨åºã¦è¡ãã¨è¨ããã°ããã®è¦ç·ããã¡ãã®æ¹ã«åãã¦ãã¾ãããããæ¬å½ã«æãã£ãã
ã¨ããããã§ãã£ãã¨æºåããã¦ç§ãã¡ã¯å®¶ã®å¤ã¸åºã¾ããããã®æéµããã®äººã«æ¸¡ãã¦ããã®ã§ããæ¬å½ã«è¯ãã£ãã®ã ãããâ¦
é²é ããã®æ¥æ¬ã®åºã¸
ãã¦ããããªæãã§ä»ã¾ã§éããã¦ãã家ã追ãåºãããç§ãã¡ã§ãããã¨ããããè·ç©ãé ãããåºãæ¢ãã¦ãã¾ããã
ããã¦è¦ã¤ããã®ããã©ãããæ¥æ¬äººåãã«è·ç©ã®é ãå
¥ããµã¼ãã¹ãè¡ã£ã¦ããã¨ãããããããããè·ç©ã®ç½®ãå ´ãæ±ãã¦ãã®åºã«è¡ããã¨ã«ãã¾ããã
è·ç©ãé ãã
Uberã使ããã®åºã®åã«ãã©ãçããã®ã§ããããã®å¨è¾ºã¯ã©ãããå°ããªæ¥æ¬è¡ããããçµæ§æ¥æ¬èªãæ¸ããã¦ãã¾ãããä¹
ã
ã«è¦ãæ°ãããæ¥æ¬èªã
ã¡ãã£ã¨ã³ãã³ãããªãããåºã®ãã¢ãéããã¨ä¸ã®åºä¸»ãæ¥æ¬èªã§è©±ããããããã¦å°ãããããã£ãã®ã¨å®å¿æããã£ãã®ãè¦ãã¦ãã¾ãã
ã¨ããããã§ãã®äººã«è©±ãããªããè·ç©ãé ãããã¨ã«æåãã¾ããã
ä»æãè¿ãã¨ãè·ç©ãé ããã ãã§ãé稼ãããªãã¦ããå売ã ãªã¨æãã¾ãããããããã§ããã
è·ç©ãé ãçµãã£ãã®ã§ãæå¾ã®ç®çå°ã§ããã©ã´ã¡ã¬ã´ã£ã¬ãã¸ã¸è¡ãã¾ããã
ã©ã´ã¡ã¬ã´ã£ã¬ãã¸
ã©ã´ã¡ã¬ã´ã£ã¬ãã¸ã¯ãã©ã³ã¹ã®éå¤ã«ãã巨大ãªã·ã§ããã³ã°ã¢ã¼ã«ãã¢ã¦ãã¬ããè¡ãéã¾ã£ã¦ããã¨ããã§ãæã¨ããååãã¤ãã¦ããéããçµæ§ãªæ·å°ãããã¾ãã
ãã©ã³ã¹æå¾ã®å ´æã¨ãããã¨ã§ãããã§ã®ãã³ãã·ã§ããã³ã°ããåç£ãè²·ããã¨ã«ãã¦ãã¾ããã
Uberã«ä¹ããªããå¤ã®é¢¨æ¯ãçºãã¦ããã®ã§ãããããªå¸å
ããåºãã¨ãçªç¶è¿ä»£åãããã®ããã«ãã«ãã¢ãã¼ããªã©ãç«ã¡ä¸¦ãã§ããããªãã¨ãããä¸æè°ãªé¢¨æ¯ã ãªãã¨æã£ã¦ãã¾ããã
ã¨ããããã§1æéã»ã©ããã©ã´ã¡ã¬ã´ã£ã¬ãã¸ã¸ã¨å°çãã¾ããã
ããã§ã¯ãç¹ã«å¤§ããªäºä»¶ãå°ã£ããã¨ããªããã¿ããªã§ã¶ãã¶ãã¨ã·ã§ããã³ã°ããã¦ãã¾ããã
ãã¯ãç¹å®ã®è¦³å
å°ã«è¡ãã®ãé¢ç½ãã§ããããããã£ãç¾å°ãªãã§ã¯ã®ãã®ãã®ãã³ãã·ã§ããã³ã°ããã®ããããªã¨æãã¾ãã
ããã§ã¯å®¶æãåéã¸ã®ãåç£ãèªåã®æã欲ããã£ãæè¨ãªã©è²ã
è²·ãã¾ãããããã¼æ£è²¡ããæ°ããã¾ãã
å人çã«ã¯Celioã¨ããã¡ã¼ã«ã¼ããããããªæãç½®ãã¦ããããããå®ãã£ãã®ã§ãæ°ã«å
¥ãã§ãã
ãã¨äººçã§åãã¦ãã°ããè²·ãã¾ãããã¾ãç§ã¯å¸ãã¾ãããã
æå¾ã®æ©é¤(æ¥æ¬é£)
ãããªæãã§ã¿ããªã§ã·ã§ããã³ã°ãçµããè·ç©ãé ããå ´æã«æ»ã£ã¦ãã¾ããããã®æç¹ã§å¤ãæ´ãã¦ãã¦ãè¿ãã§ã飯ãé£ã¹ããã¨ãããã¨ã«ãªã£ã¦ãã¾ãããã
è¿ãã®ãã©ã³ã¹æçå±ãè¦ã¤ããããã®ãããã«ãã£ãæ¥æ¬æçåºã«å
¥ããã¨ã«ãã¾ããã
ååã«å¼ãç¶ãä»åãå¤å½ã§æ¥æ¬æçããã¹ãã®ãããã¤ããã¾ããããæ
ã®ééå³ã§ããããã
ãã©ã³ã¹æå¾ã®ã飯ããã¡ããå³åã©ã¼ã¡ã³ã§ããæ¥æ¬ã®å³ã§ãããå°ãèãã£ãããã«ãæãã¾ããã
ä»å訪ãããåºã¯ãã¡ãã
goo.gl
ããã°ãã©ã³ã¹
ã飯ãé£ã¹çµãã£ã¦ãè·ç©ãåãåãã¨ãã§ã«ç©ºæ¸¯ã¸ã¨åãããªããã°ãããªãæéã§ããã
ãªã®ã§Uberãå¼ãã§ç©ºæ¸¯ã¸è¡ããã¨ã«ãã¾ãããUberãæ¥ãã¾ã§ã®éããã®å
æ¯ãæå¾ããã¨æããªãããã©ã³ã¹ã®è¡ä¸¦ã¿ã«è¼ãå
ãè¦ãªãããæ
ã®æãåºã«ãµãã£ã¦ãã¾ããã
æå¾ã«ãåç£å±ããã¨ããªãããªã¼ã¨ããããããã¦ãã¾ãããç¡ãã£ãã®ã§è«¦ãã¾ããã
ããã¦ãã£ã¦ããUberã«ä¹ããããªã®è¡ãå¾ã«ããã®ã§ããã
ãã¦ãã·ã£ã«ã«ãã´ã¼ã«ç©ºæ¸¯ã«è¡ãéä¸ã§é£è¡æ©ã®ç¢ºèªããã¦ããã®ã§ãããã©ãããã·ã£ã«ã«ãã´ã¼ã«ç©ºæ¸¯ã¯ãã¡ããã¡ãåºãããããæä¹å£ãééããã¨ã¨ãã§ããªããã¨ã«ãªãã®ã§è½ã¡çãã¦æ¢ãã¦ãã¾ãããçããã空港ã«è¡ãã¨ãã«ã¯ãæ°ãã¤ãã¦ãã ããã
空港ã«çãããã¾ãã¯ãã¤ãã®ããã«è·ç©ã®æ´çããããããã³ãé£ã¹ãããã¦ãè·ç©ãé ãã«è¡ãã¾ããã
ããã§æå¾ã«ããããã®ãç§ãã¡â¦ã¨ãããç§ãªã®ã§ããã
空港ã«è·ç©ãé ãã¦ããã®ã§ãããã©ããããã®ãã¡ã®ä¸ã¤ã軽ããããããè·ç©ã§ã¨ã©ã¼ãåºã¾ããããªã®ã§ç©ºæ¸¯ã®è·å¡ããã«ãªãããã£ã¡ã®æ¹ã¸æã£ã¦è¡ã£ã¦ããã¨è¨ããã¾ãããå¤åâ¦
ãªã®ã§å
¨åã§èµ°ã£ã¦ãã£ãã®ã§ããå
¨ãã©ãã«é ããã°ããã®ããããããæã£ã¦è¡ã£ã¦ããã¨è¨ã£ãè·å¡ããã«ç³ã訳ãªãããã«ããããªãã¨è¨ãã¾ãããããã¨ããã®è»½ãè·ç©ãé ããå ´æã«ä¸ç·ã«é£ãã¦è¡ã£ã¦ããã¾ãããè«ç¬ãã¦ããã®ã«ãããããããããã対å¿ãã¦ããã¦ãããã¨ããããã¾ããã¤ã±ã¡ã³ã®ãå
ããã§ããã
é
ãã¦ã¿ããªã¨åæµãã¦èº«ä½æ¤æ»ãè¡ããæä¹å£ã®æ¹ã«åãããã¨ã«ãã¾ãããæä¹å£ã«è¡ãæã«é»è»ã使ã£ãã®ã§ãããã¾ã空港å
ã«é»è»ãããã®ã«é©ããã¨ã¨ãã«ãé»è»ã使ããªãã¨éãæä¹å£ã«ãããããªãã¨ããã®ãããã®åºããç©èªã£ã¦ãããªãã¨æãã¾ããæ¬å½ã«ç©ºæ¸¯ã®å ´æãééããã¨å¤§å¤ãªãã¨ã«ãªãã®ã§ãæ°ãä»ããã ããã
æå¾ã«å£²åºã§è²ã
è¦ã¤ã¤é£è¡æ©ãå¾
ã¤ãã¨ã«ãã¾ãããããã§ã¾ããã¤ãã®ããã«æªä¹ãã§æå³ä¸æãªé£²ã¿ç©ãè²·ãã¾ãããããªãã¨ãããå¾®å¦ãªå³ã ã£ãã®ãè¦ãã¦ãã¾ãã
ããã¦çã§é£è¡æ©ã«ä¹ãããã®ã¾ã¾ç ãã«è½ã¡ãã®ã§ãããããã°ãã©ã³ã¹ã¾ãæ¥ãæ¥ã¾ã§â¦
ãã¦ãæå¾ã«ã楽ãã¿ã®æ©å
é£ãããã¾ããã
ã¾ãã¯1é£ç®ããã®ãããªæãã§ããããã³ããããªãã«ç¾å³ããã£ãã®ã§ããããã¯ãç¾å°ã§é£ã¹ããã®ã¨ã¯ã¾ãéã£ãæãããã¾ããããã ãã¶ã¼ãã¯ããããã
ããã¦2é£ç®ãæãã¯ãã«ã¯ã´ã£ããã®ãã³ã¨ãã«ã¼ãã®ã»ããã§ããããã£ãããã¦ãã¦ã¨ã¦ãç¾å³ããã£ãã§ãã
æ¥æ¬å°ç
ãã¦ãæ©å
é£ãé£ã¹ã¦å¯ã¦ãç¹°ãè¿ãã¦ããã¨ãã£ã¨ããéã«æ¥æ¬ã«å°çãã¦ãã¾ããã
ããã¯ç©ºè·¯ã示ããã¢ãã¿ã¼ãªã®ã§ãããããªã«é·ãè·é¢ãæ
ãã¦ããã®ãã¨æãã¨ææ
¨æ·±ãã§ããã
ã¨ããããã§ç¡äºã«éãç«ã£ã¦ãããã¼ã®æ¹ã¸è¡ãã¨ä¸çªæåã«æãã®ã¯ãã¯ããæ¥æ¬èªãæ¸ãã¦ããï¼ãã§ããã
ååã®ããã«é·æéã§ã¯ãªãã£ãã®ã§è¡æã¯å°ãªãã£ãã®ã§ãããããã§ãæ¥æ¬ã«å¸°ã£ã¦ãããã ãªãã¨å®æã§ãã¾ããã
ããã¨ã¨ãã«è²ã
ãªãã¥ã¼ã¹ãå
¥ã£ã¦ãã¾ãããå½å
ã§ã¯ã³ããããããªãã«æµè¡ãã¦ãã¦ãææã ã£ãã®ã§å¤§å¤ãªãã¨ã«ãªã£ã¦ããã¨ã®æãã§ããã
ããã«å¨ãã®äººããã¹ã¯ããã¦ãã¦ããã©ã³ã¹ããæ·±å»ãªç¶æ³ãªã®ã§ã¯ã¨æã£ã¦ãã¾ããã
ãã¦ãç¡äºã«è·ç©ãåãåãã¿ããªã§æ
ã®çµãããå°ãæ²ãã¿ãªããä¸é¨ã¯è§£æ£ãã¾ããã
æ®ã£ãã¡ã³ãã¼ã§ã飯ãé£ã¹ã«è¡ã£ãã®ã§ããããã¯ãæ¥æ¬ã«æ»ã£ã¦ãããæ¥æ¬ã£ã½ããã®ãé£ã¹ããï¼ã¨ãããã¨ã§åé£å±ããã«å
¥ããåé£ã»ããã注æãã¾ããã
ãã°ããã®ãã丼ãé£ã¹ãã¨ããã©ã³ã¹æçãããã¯ããããã£ããããã£ã±ãæ¥æ¬æçãå£ã«åããªãã¨æãã¾ããã
ããã¦ãã®ã¾ã¾è§£æ£ãã次ã®æ¥ã®ä»äºã«åãã家ã«å¸°å®
ããããã«å
¥ãã®ã§ããã
次å
ãã¦ç¡äºã«æ¥æ¬ã¸ã¨ãã©ãçãã6人ã
ãã®æ
è¡ã®ææ³ããä½ãããå¾æ¥è«ãããæ¯ãè¿ãããã¨ãããã¾ãã
次åããã¼ã«çæã«æãåºèªããã楽ãã¿ã«
æµ·å¤æ è¡ in France ï½3æ¥ç®ãå¾åï½
æ
ãããããä½³å¢ï¼3æ¥ç®å¾åã§ãã
ååã¯ãã¡ã
shussy8.hatenablog.com
ãåæ¸ã
æ¼ããå¾
ä¸åº¦ç¾è¡é¤¨ã®åã®å¤§éãã«åºãå¾ããã®ããããããããããªããUberãå¾
ã£ã¦ãã¾ããã
ç§ãã¡ã¯Uberã§é¢ããã¨ããã«ãããã³å±ããã«è¡ããã¨ã«ãã¾ããããã³å±ãããããå ´æã¯ãã¬å°åºã¨å¼ã°ãã¦ãã¦ãæ¥æ¬ã§ããã¨æ°å®¿2ä¸ç®çãªã¨ããã§ãã
ãã®ãã³å±ããã¯ããªã§ã人æ°ä¸ä½ã«ä½ç½®ãããã³å±ããã§ããã®ãã³ãé£ã¹ã«è¡ããã¨ã«ãã¾ããã
ãããUberã§çããã¨ããã¯ç§ãã¡ãè¡ãããã¨ããã¨ã¯éã£ã¦ãã¦ãããããã®åºã¯éã£ã¦ãã¾ãããæ²ãã¿ã
ã¡ãªã¿ã«è¨ªãããã³å±ããã¯ãããªæãã§ããã
ãã®ãããªå½¢ã§æéãã¤ã¶ããç§ãã¡ã¯æ¬¡ã®ç®çå°ã§ããæä¼ã¸ã¨è¶³ãéã³ã¾ããã
ãµã³ãã¥ã¹ã¿ãã·ã¥æä¼
ã¨ããããã§ç§ãã¡ã¯æ¬¡ã®ç®çå°ã§ãããµã³ãã¥ã¹ã¿ãã·ã¥åä¼ã¸ã¨ãã£ã¦ãã¾ããã
ãã®æä¼ã¯ããªã§ãæ大ç´ã®ãã®ã§ãããã«ã¯ä¸çã§ãé¡ãè¦ãªãã»ã©ã®ãã¤ããªã«ã¬ã³ãããã¨ã®ãã¨ã§ããããããæ¯é±æ¥ææ¥ã«ã¯ããã§ãã®ãã¤ããªã«ã¬ã³ã®ç¡ææ¼å¥ä¼ãéãã¨ã®ãã¨ã
ãªã®ã§ç§ãã¡ãããã§ãã¤ããªã«ã¬ã³ã®æ¼å¥ãè´ããã¨ã«ãã¦ãã¾ããã
æä¼å é¨
æä¼ã®å¤ã§ã¯çµæ§ãªäººããã¦ãè¿·åã«ãªãããã§ãããç¡äºã«å
¥ããã¨ãã§ãã¾ããã
ä¸ã§ã¯ããããªã¹ãã³ãã°ã©ã¹ããã®ãããé«ãä½ç½®ã«ãããã¤ããªã«ã¬ã³ã®ãã¤ããè¦ãªããå§å·»ãåãã¦ã¾ããã
ä¸ã«å
¥ã£ã¦ãã°ããå¾
ã£ã¦ããã¨ãä¸å¤®ã®å°åº§ã«äººãæ°äººéã¯ãããä½ããè¨ã£ã¦ãã¾ãããããããèæ¸ãä½ãã®å
容ãèªã£ã¦ããã®ã ã¨æãã¾ãããä½ããããã¾ããã§ããã
ãããã¦ããã¨ããããããã¤ããªã«ã¬ã³ã®æ¼å¥ãå§ã¾ãã¾ããã
ãã¤ããªã«ã¬ã³ã®æ¼å¥
ãã¤ããªã«ã¬ã³ã®æ¼å¥ã¯æåã¯ä¸é³ä¸é³ä¸å¯§ã«æ¼å¥ããã¦ãã¾ããããã®é³ãéããªæä¼å
é¨ã«é¿ã渡ããããããªé³ãå¥ã§ã¦ãã¾ããã
æµç³ããã ã巨大ã ã¨è¿«åãããã¾ããããããã®é³ã¯å¿ãè½ã¡çããããããªå¿ä¼ã¾ãé³ã§ããã
ãã®ãããªæãã§æ¼å¥ãé²ãã§ãã¾ãããããã®å®ããã§å£®å¤§ãªé³ãèããªãããã ãã ãã¨ç æ°ã襲ã£ã¦ãã¾ããã
ããã¦è¿ãã«ç©ºãã¦ããæ¤
åã«åº§ãã¨ããã®ã¾ã¾å¯ã¦ãã¾ãã¾ããã
æ°ä»ããæã«ã¯æ¼å¥ãã»ã¼çµãã£ã¦ãããæå¾ã®ææã®éä¸ã§ããã
ã¨ããããã§ç§ã¯æä¼ã§èãªãé³æ¥½ãè´ããªããããããå±
ç ãããã¦ããããã§ããä¸ç·ã«å±
ãåéæ°ããæå¾ã¯ã¨ã¦ãåå¼·ãè¿«åããæ¼å¥ã ã£ãããã§ãèãããã£ããªããã¾ããããããæãåºããã
æä¼å¤é¨
æ¼å¥ãçµããã¨ã¿ããªä¸æã«æä¼ã®å¤å´ã¸åºå§ããã®ã§ãç§ãä¸ç·ã«æµãã«ä¹ã£ã¦åºããã¨ãã¾ããã
ãããå¨ãã«ã¯åéã¯ããããã¿ããªã©ãã«ããã®ãããããªãã¾ã¾ãæµãã«ä¹ã£ã¦å¤ã¸åºã¾ãããå
¥å£ã¨åºå£ãåã¨å¾ãã«ãã£ã¦é©å½ã«åã®æ¹ããåºã¾ããããã¿ããªã¯å¾ãã®æ¹ããåºãããããã®ã¾ã¾ç§ãæä¼ãåå¨ãã¦åæµãã¾ãããã¹ãããç¡ãæ代ã¯ã¿ããªã©ããã£ã¦åæµãã¦ãããã ããã¨æ¬å½ã«æãã¾ãã
æä¼ã®å¤å´ã«ã¯ãè¬ã®é ã ãã®ãªãã¸ã§ãç½®ãã¦ãããããã§ã¿ããªã§åçãæ®ãã¾ãããå¤ãããããæä¼ã«ãé¢ãããç¾ä»£ã¢ã¼ãã«ãååããªã®ã¯ãããã¨ã ã¨æãã¾ãã
ãªãã§ããã®ãªãã¸ã§ãçµæ§æåãªãã®ãããã®ã§èå³ã®ãã人ã¯èª¿ã¹ã¦ã¿ã¦ãã ããã
ãã©ã¼ã©ã ã»ãã»ã¢ã¼ã«
ãµã³ãã¥ã¹ã¿ãã·ã¥æä¼ã®ãªãã¸ã§ã®åããå´ã«ã¨ã¦ã巨大ãªå»ºé ç©ããã£ãã®ã§ããã«è¡ã£ã¦ã¿ããã¨ã«ãã¾ããã
ãã®å»ºé ç©ã¯æ¨é ã§å¨ãã®ä¸ä¸ä»£ãªé°å²æ°ã®å»ºç©ã¨æ¯è¼ãã¦ãã¨ã¦ãè¿ä»£çãªå½¢ã®å»ºé ç©ã§ããã
ããã¯ãã©ã¼ã©ã ã»ãã»ã¢ã¼ã«ã¨ããååã®å·¨å¤§ãªã·ã§ããã³ã°ã¢ã¼ã«ã ã£ãã®ã§ããåç£ãè¦ã¤ã¤ããã§ãè²·ãç©ããããã¨ã«ãã¾ããã
ã©ãããã巨大åã¨ããã¨ããã®ã·ã§ããã³ã°ã¢ã¼ã«ã§1æ¥ã¤ã¶ããããªããã大ããã£ãã§ãããªããå°ä¸ã ãã§ãªãå°ä¸4éã¾ã§ããã®ã§ãããã
ãã®ä¸ã§ç§ãã¡ã¯ããããæ´æããåç£ãªã©æãæãã®ãã®ãè³¼å ¥ãã¾ããã
ä¸åº¦å¸°å®
ãã®ãã¨ä¸åº¦æ°å®¿å ã«å¸°ãã¾ãããããã§è·ç©ãæ´çãã¦ãåã³ç§ãã¡ã¯å±æéè¿ãã«éãç«ã¤ãã¨ã«ãã¾ããã
ãã¹ãããã¼ã
å±æéè¿ãã«éãç«ã¤ã¨ãããã«ã¯ç§ãã¡ãä¹ããã¹ãå¾
æ©ãã¦ãã¾ããã
ãã®ãã¹ã¯ãã¹ãããã¼ã ã¨ãããã¢ã¼ã«ä½¿ç¨ããããã¹ã§ãããã¹ãããã¼ã ã¨ã¯ãããªã®æåãªè¦³å
åæããã¹å
é¨ã§é£äºã楽ãã¿ãªãã観å
ã§ãããã¹ãã¢ã¼ã§ãã
å人çã«ä½ãè¯ããã¨ããã¨ããã ã§ããå±éºãªå¤ã®ããªãä½ã®å®³ããªããã¹ä¸ãã楽ãããã¨ãããã¨ã§ãã観å
åæãä¸åº¦ã§æ¥½ãã¿ããã®ã§ããã°ç§çã«ã¯ãå§ãã®ãã¢ã¼ã§ãã
æä¹
ãã¹ã«ç»å ´ããã¨ããã«ã¯ãã§ã«ã¡ãã¥ã¼è¡¨ã¨ã¯ã¤ã³ã°ã©ã¹ã並ã¹ããã¦ãã¾ãããããã¦ã¿ããªãå¸ã«ã¤ãã¦è«ç¬ãã¦ããã¨ãã¹ã®ä¹åå¡ã®äººãã·ã£ã³ãã³ãæã£ã¦ãã¦ããã¾ããã
å±æéãèã«ããªããã·ã£ã³ãã³ã飲ããã®ã¯ãã®ãã¢ã¼ãªãã§ã¯ã ã¨æãã¾ãã
ãã¢ã¼ã®éã¯ãã®ãããªå½¢ã§é²ãã§ããã¨ã®ãã¨ã§ããã
ååæã«ã¯ããããé³å£°ã§ã®ã¬ã¤ããã¤ãã¦ãããã©ã®ãããªã¨ããããæãã¦ããã¾ãããããèãã¤ã¤è«ç¬ããªãããã¹ãã¢ã¼ãã¹ã¿ã¼ããã¾ããã
ãã¹ãã¢ã¼
ãã¹ãã¢ã¼ã§ã¯æåã«å±æéããã¹ã¿ã¼ããããªãã©åº§ãã«ã¼ãã«ç¾è¡é¤¨ããã¼ãã«ãã 大èå ãã¨ããã§ã«å¡ã¨ããªã®åæãããããªãããããªã®ã³ã¼ã¹ã¡ãã¥ã¼ãå ªè½ãã¦ãã¾ããã
ã¾ãããã®3æ¥éã§è¨ªããå ´æããã®æãã§ãä»åº¦ã¯ãããããã¨ãããããã¨ãã話ãããªããããã¢ã¼ã楽ãã¿ã¾ããã
ã³ã¼ã¹ã§ã¯ããã®ãããªã¡ãã¥ã¼ãæä¾ããã¦ãã¾ãããã«ããéãèãªã©å¹
åºãã³ã¼ã¹ã§ã©ã®ã¡ãã¥ã¼ãã¨ã¦ãç¾å³ããã£ãã§ãã
ã¾ããã¨ããã§ã«å¡ã«ã¤ããæã«ã¯ãã®ãã¹ãã¢ã¼ã®æå»ã¨åããã¦ããã®ããã¡ããã©ã¤ã«ããã¼ã·ã§ã³ãå
ãã¿ã¤ãã³ã°ã ã£ãã®ã§ãã®åã§è¨å¿µæ®å½±ããã¾ããã
æ®æ®µæ¼ã«è¦ãã¨ããã§ã«å¡ã¨æ¯ã¹ã¦ããã®è¼ããã¨ã¦ããããã§ããã
ããã¦é·ãããã§ä¸ç¬ã ã£ããã¹ãã¢ã¼ãçµããã¨ãç§ãã¡ã¯ãã®è¶³ã§å®¶ã«å¸°ãã¾ããã
ããããææ¥ã§æçµæ¥ã ããã¨ããããªãã¨ã話ããªãããããªã§ã®æå¾ã®å¤ãæ®ã£ãã¯ã¤ã³ã¨ãã¤ã¾ã¿ãé£ã¹ãªããéããã
ãã®ã¾ã¾ç ãã«ã¤ãã®ã§ããã
次å
ããããæ
ãä½³å¢ï¼
æ
ã®ä½³å¢ã«ãµããããè¿·å®®ã«è¿·ãè¾¼ãããã¦ãè¿·ãè¾¼ãã è¿·å®®ããç¡äºã«ã¿ããªè±åºã§ããã®ãï¼ï¼
次åãå°ä¸è¿·å®®ã¨ã·ã§ããã³ã°ãã楽ãã¿ã«ã