A modern Android powered smartphone is a complex hardware device: Android OS runs on a multi-core CPU - also called an Application Processor (AP). And the AP is one of many such processors of a System On Chip (SoC). Other processors on the SoC perform various specialized tasks — such as security functions, image & video processing, and most importantly cellular communications. The processor performing cellular communications is often referred to as the baseband. For the purposes of this blog, we refer to the software that runs on all these other processors as “Firmware”.

Securing the Android Platform requires going beyond the confines of the Application Processor (AP). Android’s defense-in-depth strategy also applies to the firmware running on bare-metal environments in these microcontrollers, as they are a critical part of the attack surface of a device.

A popular attack vector within the security research community

As the security of the Android Platform has been steadily improved, some security researchers have shifted their focus towards other parts of the software stack, including firmware. Over the last decade there have been numerous publications, talks, Pwn2Own contest winners, and CVEs targeting exploitation of vulnerabilities in firmware running in these secondary processors. Bugs remotely exploitable over the air (eg. WiFi and cellular baseband bugs) are of particular concern and, therefore, are popular within the security research community. These types of bugs even have their own categorization in well known 3rd party exploit marketplaces.

Regardless of whether it is remote code execution within the WiFi SoC or within the cellular baseband, a common and resonating theme has been the consistent lack of exploit mitigations in firmware. Conveniently, Android has significant experience in enabling exploit mitigations across critical attack surfaces.

Applying years worth of lessons learned in systems hardening

Over the last few years, we have successfully enabled compiler-based mitigations in Android — on the AP — which add additional layers of defense across the platform, making it harder to build reproducible exploits and to prevent certain types of bugs from becoming vulnerabilities. Building on top of these successes and lessons learned, we’re applying the same principles to hardening the security of firmware that runs outside of Android per se, directly on the bare-metal hardware.

In particular, we are working with our ecosystem partners in several areas aimed at hardening the security of firmware that interacts with Android: