python
ã¯ããã« æè¿ã¯è¡ãè¦ãã¨äººéããã³ããåã«æ»ã£ã¦ããããã¾ãããææè æ°èªä½ã¯ããã»ã©æ¸ã£ã¦ããªãã®ã§ãã®ãããªç¶æ³ã¨ãªã£ã¦ããã®ã¯ã身è¿ã«ã³ããã®ææçµé¨è ãããªããã¨ãåå ã®ä¸ã¤ã§ããã®ã§ã¯ãªããã¨ãã仮説ãããã¾ãã人ã¯èº«è¿ã«èµ·ãã£â¦
ã¯ããã« æ¸ç±ã«é¢é£ããæ å ±ãç¨ãã¦ãã®æ½å¨è¡¨ç¾ããã¾ãç²å¾ãããã¨ã§ã 以ä¸ã®ãããªãã¨ãã§ããªãããªã¼ã¨èãã¦ãã¾ãã èªèº«ã®èªæ¸æ¸ã¿ã®æ¬ã¨ç §ããåãã㦠ã«ãã´ãªãã¨ã®ç¶²ç¾ çã®ç®åº æ¬ãèªãã æã«å¾ãããæ å ±éã®ç®åº 該å½ã®æ¬ã®å®èªå¯è½æ§â¦
ã¯ããã« WFHã®æ°å転æã§ãã¾ã«ã¸ã£ã°ãªã³ã°ããã¦ãã¦ãããæè¿ã®ç©ä½æ¤åºæè¡ã使ãã°åæ°ãã«ã¦ã³ãããä»çµã¿ãå²ã¨ç°¡åã«ä½ããã®ã§ã¯ï¼ã¨æã£ãã®ã§è©¦ãã«åç»ããï¼ãã¼ã«ã«ã¹ã±ã¼ãã®åæ°ãã«ã¦ã³ãããä»çµã¿ãä½æãã¾ããã å®æ½æé 以ä¸ã®æâ¦
ã¯ããã« æè¿kaggleã§ãå¼·åå¦ç¿ç³»ã®ãé¡ãå¢ãã¦ããããã«æãã®ã§(å®éã«è§£æ³ã«å¼·åå¦ç¿ã使ç¨ããã¦ãããã¯å¥ã¨ãã¦)ã æãã¤ãã¦ããªãã£ãå¼·åå¦ç¿ã«ã¤ãã¦ãæ¬ãèªã¿ãªãã試ãã¦ã¿ããã¨ãæ¸ãã¾ãã åèè³æ pythonã§å¦ã¶å¼·åå¦ç¿ https://githâ¦
ã¯ããã« å¤æ¬¡å æç³»åãã¼ã¿ã®ã¯ã©ã¹ã¿ãªã³ã°ããããã¨æã£ã¦æ¢ãã¦ããã¨ããã ã¡ããã©ãã¡ãã®ããã°ã®é¡æãå°é¢¨è»éã®ã¯ã©ã¹ã¿ãªã³ã°ã¨ãããå¤æ¬¡å æç³»åãã¤ç³»åé·ã®ç°ãªããã¼ã¿ãã¯ã©ã¹ã¿ãªã³ã°ããã¨ãããã®ã ã£ãã®ã§ãç解ãå ¼ãã¦åãå 容â¦
ã¯ããã« é¸æããé ç®ã«å¯¾ãã¦ãã¤ã³ã¿ã©ã¯ãã£ãã«å°å³ãæ´æ°ããwebã¢ããªãä½æãããã¨æãã¾ããã æåã¯streamlitã®pydeckã§è©¦ãã¦ããã®ã§ãããå°å³ãè¤æ°åã¬ã³ããªã³ã°ããã¨çºçãããã°ã解æ¶ã§ããªãã£ããããä»åã¯Dashã§å®è£ ãã¾ããã å®â¦
ã¯ããã« åã«é¡ä¼¼æ¬æ¤ç´¢ã·ã¹ãã ãä½æããã®ã§ããããã®ä¸ã§æ°ä¸ããæ¬ã®åè£ã®ä¸ããæ¢ãããæ¬ã®æ¤ç´¢ããé¨åãããã¾ãã ãã®ã¨ãã¯å ¥åãããåèªã«å¯¾ãæ¤ç´¢ãå ¨æ¸ç±ã«å¯¾ãã¦è¡ããã¨ããæãåç´ãªææ³ãå®è£ ããã®ã§ããã ããå°ãããããæ¹ããªâ¦
ã¯ããã« ã°ã©ãæ§é ã®ãã¼ã¿ãã¯ã©ã¹ã¿ãªã³ã°ããæ¹æ³ã«ã¤ãã¦èª¿ã¹ã¦ãã¦ã ã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã¨ããææ³ã使ãããã ã£ãã®ã§ããã®å®é¨çµæãè¨è¿°ãã¾ãã åèè³æ https://arxiv.org/pdf/0711.0189.pdf[1] https://towardsdatascience.com/speâ¦
ã¨ãããã¨ã§ãæ¬ãæ¤ç´¢ããã¨é¡ä¼¼ãã¦ããæ¬ã®ãªã¹ããåºåãããµã¤ãã試ä½ãã¦ã¿ã¾ããã https://bookrecommendst.herokuapp.com/ (herokuãä»ã®ç¨éã§ä½¿ãã¾ã§ã¯ã¢ã¯ã»ã¹å¯è½ãªäºå®ã§ãã) youtu.be ãããªæãã§ãããæ¤ç´¢ããæ¬ã«å¯¾ãã¦é¡ä¼¼åº¦ã®é«ãâ¦
ã¯ããã« ãã¼ã¿åæãããã«ã¯ãã¼ã¿ãå¿ è¦ã§ããã常ã«æ¬²ãããã¼ã¿ãåå¨ããã¨ã¯éããã æã«ã¯èªåã§åå¾ã»ä¿åããå¿ è¦ãåºã¦ããã¨æãã¾ãã ããã§ã¯GCPãç¨ãã¦ãã¼ã¿åéç°å¢ãæ§ç¯ãã¦ã¿ãåå¿é²ãè¨è¿°ãã¾ãã å®æ½æ¦è¦ apiã使ã£ã¦æ¥æ¬¡ã§vtubâ¦
ã¯ããã« åæ°ãå¤ããã¼ã¿ã»ããã«å¯¾ãã¦ã¯ã©ã¹ã¿ãªã³ã°ãè¡ãå ´åã«PCAã§åæ°ã次å åæ¸ãã¦ããã¯ã©ã¹ã¿ãªã³ã°ãããã¨ããææ³ããããããã§ãã 確ãã«PCAçã§åã®æ¬¡å åæ¸ãè¡ããã¨ã§ãã¤ãºæåãè½ã¨ããã®ã§ããã¾ãããã°éè¦ã¨ãªãç¹å¾´ã ããç¨â¦
ã¯ããã« ãã¼ã¿ãçºãã¦ããã¨ãããåå¸ã«å¯¾ãã¦ãããæ£è¦åå¸ã«å¾ãã®ãã対æ°æ£è¦åå¸ããããã¨ãã¬ã³ãåå¸ã®æ¹ãè¿ãã®ãï¼ãã¨ããããã«ã©ã®åå¸ã®å½ã¦ã¯ã¾ããããããæ°ã«ãªããã¨ãããã¨æãã¾ãã ããã確èªããæ¹æ³ãæ¢ãã¦ã¿ãã¨ãããsciâ¦
ã¯ãã㫠以åã«lightgbmã¯å ¥åã«æ¬ æå¤ããã£ã¦ããã¾ãå¦ç¿ãã¦ãããã¨ããè¨äºãæ¸ããã®ã§ããã ããã¯å¦ç¿æã«æ¬ æãåå¨ãã¦ããå ´åã®è©±ã§ããã ç¾å®ã®åé¡ãèããã¨ãå¦ç¿æã¨ãã®ã¢ãã«ã使ã£ãæ¨è«æã§ã¯æç³»åã®éããç°å¢å¤åã®å½±é¿ ã«ããâ¦
ã¯ããã« ãããããã¹ã«ããã¦ç²ããåæã«ä¸ããå½±é¿ãå®éåãã¦ã¿ãã ã¨ããé¡ç®ã§ä¸è¨ã¤ãã³ãã§LTãã¦ãã¾ããã spoana.connpass.com 使ç¨ããè³æã¯ä»¥ä¸ã«ãªãã¾ãã ããããã¹ã«ããã¦ç²ããåæã«ä¸ããå½±é¿ãå®éåãã¦ã¿ã - Speaker Deck å â¦
ã¯ããã« couseraã§Bayesian Methods for Machine Learningãåãã¦ãããã§ããã ãã®ä¸ã§åºã¦ããVAE(Variational Auto Encoder)ã§å°ã試ãã¦ã¿ãããã¨ããã£ãã®ã§ãã®å®é¨è¨é²ã«ãªãã¾ãã åèæç® VAEã®çè«ãä½ç½®ä»ãã«ã¤ãã¦ã¯ä¸è¨è³æãåèã«ãªâ¦
ã¯ããã« ãã¼ã¿ã®å¤æ°éã®é¢ä¿æ§ãæããã«ãããã¨ããã±ã¼ã¹ã¯å¤ãã¨æãã¾ãã ãã®å ´åç¸é¢ãæ£å¸å³ãã¿ãã®ãä¸è¬çã§ããã交絡ããã¤ãºãå¤ãã±ã¼ã¹ãªã© ããã ãã§ã¯ä¸ååãªå ´åãããããããã®å ´åã«ã対å¿ã§ããããªææ³ã試ãã¦ã¿ã¾ãã 試ãâ¦
â»ãã®è¨äºã§ä½¿ç¨ãã¦ããå¤éä»£å ¥æ³ã®ããã±ã¼ã¸ã¯æ£å¼ãªå¤éä»£å ¥æ³ã®æ çµã¿ã¨ã¯ç°ãªãã¾ãã®ã§ã注æé¡ãã¾ãã ã¯ããã« æè¿å¤éä»£å ¥æ³ã¨ããæ¬ æå¤è£å®ã®ææ³ããããã¨ãç¥ãã¾ããã çµ±è¨å¦ã®çéã§ã¯æ¬ æå¤è£å®ã¯å¤éä»£å ¥æ³ã使ç¨ããã®ããã¿ã¼ã®ãâ¦
ã¯ããã« æ¥ã ã®çæ´»ãå¶ãä¸ã§ãã©ã³ããã©ãã§é£ã¹ããã¨ãããã¨ã¯é常ã«éè¦ãªåé¡ã§ã(2åç®)ã ååã¯ãã®åé¡ãæé©åæ¢åé¡ã¨æãã¦æ¢ç´¢ã¨æ´»ç¨ã®æé©ç¹æ¢ç´¢ãè¡ãã¾ããããæé©åæ¢åé¡ã§ã¯ä¸åº¦è¦éããåºã¯ããé¸æã§ããªãã¨ããå¶ç´ãããã¾ããâ¦
ã¯ããã« æ¥ã ã®çæ´»ãå¶ãä¸ã§ãã©ã³ããã©ãã§é£ã¹ããã¨ãããã¨ã¯é常ã«éè¦ãªåé¡ã§ãã ã©ã³ãã®é¸æè¢ã¨ãã¦ã¯ãæ°ããåºã«å ¥ãï¼æ¢ç´¢ï¼ã¨ãä»ã¾ã§è¡ã£ããã¨ã®ããåºã§è¯ãã£ãåºã«å ¥ãï¼æ´»ç¨ï¼ã®ã©ã¡ãããè¡ãå¿ è¦ãããã¾ããçµé¨çã«è¯ãã£ãåºâ¦
ã¯ããã« ä»åã¯CausalImpactã«ã¤ãã¦æ¸ãã¦ããããã¨æãã¾ãã CausalImpactã¯google製ã®å¹æ測å®ç¨ããã±ã¼ã¸ã§ã主ã«åºåããã£ã³ãã¼ã³ã®å¹æã測å®ããã®ã«ç¨ãããã¾ãã ãªãåºåããã£ã³ãã¼ã³ã®å¹æã測å®ããã®ã«ãããããã®ãå¿ è¦ãªã®ãã¨ããâ¦
ã¯ããã« æåã¯æè¿è©±é¡(ï¼)ã®CausalImpactã«ã¤ãã¦æ¸ããã¨æã£ã¦ããã®ã§ããããã®åºç¤ã¨ãªãå·®åã®å·®åæ³ï¼difference in differenceï¼ã«ã¤ãã¦ã®ç¥èãä¸è¶³ãã¦ããããããã®è¨äºã§ã¯å·®åã®å·®åæ³ã«ã¤ãã¦è©¦ãããã¨ãè¨è¿°ãã¦ããã¾ãã å·®åã®å·®åâ¦
ã¯ããã« ä¸è¨ã®NCAAã³ã³ãã«åå ããåçæã§ãã https://www.kaggle.com/c/womens-machine-learning-competition-2019 https://www.kaggle.com/c/mens-machine-learning-competition-2019 ãã®ã³ã³ãã®ã¿ã¹ã¯ã¯å ¨ç±³å¤§å¦ä½è²åä¼ï¼NCAAï¼ãæ¯å¹´æ¥ã«ä¸»å¬ãâ¦
ã¯ããã« æç³»å解æã«ã¤ãã¦ã¯ä»¥åã«MCMCãç¨ããç¶æ 空éã¢ãã«ã®æ¨å®ãè¡ãªã£ãã®ã§ãããç¶æ 空éã¢ãã«ã®æ¨å®æ¹æ³ã¨ãã¦ã«ã«ãã³ãã£ã«ã¿ãç¥ã£ã¦ãããæ¹ãè¯ãããã ã£ãã®ã§ãä»åã¯ã«ã«ãã³ãã£ã«ã¿ã®å®è£ ãè¡ãªã£ã¦ããã¾ãã ç¶æ 空éã¢ãã«ã®æ¨â¦
ã¯ããã« RCTã使ããªãå ´åã®å ææ¨è«ã®ææ³ã¨ãã¦å¾åã¹ã³ã¢ã使ãæ¹æ³ãããã¾ãã å¾åã¹ã³ã¢ã®ç®åºã¯ãã¸ã¹ãã£ãã¯å帰ãç¨ããã®ãä¸è¬çã§ããããã®é¨åã¯å¥ã«lightgbmã¨ãæ©æ¢°å¦ç¿çãªææ³ã§ãã£ã¦ãããã®ã§ã¯ï¼ã¨æã£ã¦ãã¾ãããæ¢ã«ãã£ã¦ããâ¦
ã¯ããã« æ©æ¢°å¦ç¿ãç¾å®ã®åé¡ã«é©ç¨ããå ´åããã®ã¢ãã«ã«èª¬ææ§ãæ±ãããããã¨ãå°ãªãããåå¨ããã¨æãã¾ãã ãã®å ´åã精度ãç ç²ã«ãã¦ç·å½¢å帰ãå®æ½ããã§ããããï¼æ¨ç³»ã¢ãã«ã®éè¦åº¦ãé å¼µã£ã¦èª¬æããã§ããããï¼ããã¨ãSHAPãLIMEãªã©â¦
ã¯ãã㫠以åã«ãAtCoderã®åé¡é£æ度ã®æ¨å®ãé ç®åå¿çè«ãç¨ãã¦è¡ãã¾ããã ããã¯çµ±è¨ã¢ããªã³ã°ã使ã£ãæ¹æ³ã ã£ãã®ã§ãããåæ§ã®ãã¨ãæ©æ¢°å¦ç¿ã§ã§ããªããã¨ããªããªã ã¨æãä»åã¯æ©æ¢°å¦ç¿ãç¨ãã¦åé¡é£æ度ã®æ¨å®ãè¡ããã¨ã«ãã¾ããã æâ¦
ã¯ããã« AtCoderã¯ç«¶æããã°ã©ãã³ã°ã®ãµã¤ãã§ããã»ã¼æ¯é±ã®ããã«ã³ã³ãã¹ããéå¬ãããåå è ãè¤æ°ã®åé¡ã解ãã解ããåé¡æ°ã¨ãã®æ©ãããé ä½ãã¤ãã¾ããã¾ãååå è ã¯ã¬ã¼ãã£ã³ã°ãæã£ã¦ãã¦ããã®ã¬ã¼ãã£ã³ã°ãé ä½ã«ãã£ã¦å¤åããã¨ãâ¦
ã¯ããã« åå ã¯ãã¼ãéå°ãã¢ã½ã³ãç¨ãã¦CMè¦è´ãã²ã¼ã ã®ãã¬ã¤æéã«ä¸ããå¹æã®æ¸¬å®ãè¡ãã¾ããã ã²ã¼ã ã®ãã¬ã¤ã®æç¡ã«ä¸ããå¹æã®é¨åã¯ãã¾ãæ¨å®ã§ãã¾ãããã ã²ã¼ã ããã¬ã¤ããæéã«ä¸ããå¹æã¯ãã¢ã½ã³åå¸ã§ã¯ãã¾ãæ¨å®ãããã¨ãâ¦
ã¯ããã« æè¿ã³ã³ã¤ãã§ã¹ãã¼ã³ãããããã£ã³ãã¼ã³ããã£ã¦ãã¾ããã ãã¤ãºããã£ã¦ããã¨ãããããã¨ãã«ææã¡ã®æ å ±ããå½é¸ç¢ºçãã©ãã¾ã§æ¨å®ã§ãããæ°ã«ãªãã¾ããã ã¨ãããã¨ã§ã5åã³ã³ã¤ãã«è¡ã£ã¦2ã¤ã®ã¹ãã¼ã³ãã²ãããã¦ãã¾ããã â¦
ã¯ããã« æè¿ã¯çµ±è¨ã¢ããªã³ã°ã«ã¤ãã¦å¦ãã§ãã¾ãããå ·ä½çã«ããããã±ã¼ã¹ã§ã¯çµ±è¨ã¢ãã«ã使ãã¹ãã ã¨ããã±ã¼ã¹ãèªåã®ä¸ã§å®ã¾ã£ã¦ãã¾ããããã®ããããã¤ããããã«å®é¨ãè¡ãªã£ã¦ããããã¨æãã¾ãã ãã¼ã¿ã»ãã ä»å㯠ãã¡ãã®å²©æ³¢ãã¼â¦