Skip to main content

Migrating from LLMMathChain

LLMMathChain enabled the evaluation of mathematical expressions generated by a LLM. Instructions for generating the expressions were formatted into the prompt, and the expressions were parsed out of the string response before evaluation using the numexpr library.

This is more naturally achieved via tool calling. We can equip a chat model with a simple calculator tool leveraging numexpr and construct a simple chain around it using LangGraph. Some advantages of this approach include:

  • Leverage tool-calling capabilities of chat models that have been fine-tuned for this purpose;
  • Reduce parsing errors from extracting expression from a string LLM response;
  • Delegation of instructions to message roles (e.g., chat models can understand what a ToolMessage represents without the need for additional prompting);
  • Support for streaming, both of individual tokens and chain steps.
%pip install --upgrade --quiet numexpr
import os
from getpass import getpass

os.environ["OPENAI_API_KEY"] = getpass()

Legacy

Details
from langchain.chains import LLMMathChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")

chain = LLMMathChain.from_llm(llm)

chain.invoke("What is 551368 divided by 82?")
{'question': 'What is 551368 divided by 82?', 'answer': 'Answer: 6724.0'}

LangGraph

Details
import math
from typing import Annotated, Sequence

import numexpr
from langchain_core.messages import BaseMessage
from langchain_core.runnables import RunnableConfig
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt.tool_node import ToolNode
from typing_extensions import TypedDict


@tool
def calculator(expression: str) -> str:
"""Calculate expression using Python's numexpr library.

Expression should be a single line mathematical expression
that solves the problem.

Examples:
"37593 * 67" for "37593 times 67"
"37593**(1/5)" for "37593^(1/5)"
"""
local_dict = {"pi": math.pi, "e": math.e}
return str(
numexpr.evaluate(
expression.strip(),
global_dict={}, # restrict access to globals
local_dict=local_dict, # add common mathematical functions
)
)


llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
tools = [calculator]
llm_with_tools = llm.bind_tools(tools, tool_choice="any")


class ChainState(TypedDict):
"""LangGraph state."""

messages: Annotated[Sequence[BaseMessage], add_messages]


async def acall_chain(state: ChainState, config: RunnableConfig):
last_message = state["messages"][-1]
response = await llm_with_tools.ainvoke(state["messages"], config)
return {"messages": [response]}


async def acall_model(state: ChainState, config: RunnableConfig):
response = await llm.ainvoke(state["messages"], config)
return {"messages": [response]}


graph_builder = StateGraph(ChainState)
graph_builder.add_node("call_tool", acall_chain)
graph_builder.add_node("execute_tool", ToolNode(tools))
graph_builder.add_node("call_model", acall_model)
graph_builder.set_entry_point("call_tool")
graph_builder.add_edge("call_tool", "execute_tool")
graph_builder.add_edge("execute_tool", "call_model")
graph_builder.add_edge("call_model", END)
chain = graph_builder.compile()
# Visualize chain:

from IPython.display import Image

Image(chain.get_graph().draw_mermaid_png())

# Stream chain steps:

example_query = "What is 551368 divided by 82"

events = chain.astream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
async for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================

What is 551368 divided by 82
==================================[1m Ai Message [0m==================================
Tool Calls:
calculator (call_1ic3gjuII0Aq9vxlSYiwvjSb)
Call ID: call_1ic3gjuII0Aq9vxlSYiwvjSb
Args:
expression: 551368 / 82
=================================[1m Tool Message [0m=================================
Name: calculator

6724.0
==================================[1m Ai Message [0m==================================

551368 divided by 82 equals 6724.

Next steps

See guides for building and working with tools here.

Check out the LangGraph documentation for detail on building with LangGraph.


Was this page helpful?


You can also leave detailed feedback on GitHub.