Skip to main content

Response metadata

Many model providers include some metadata in their chat generation responses. This metadata can be accessed via the AIMessage.response_metadata: Dict attribute. Depending on the model provider and model configuration, this can contain information like token counts, logprobs, and more.

Here's what the response metadata looks like for a few different providers:

OpenAI

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4-turbo")
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatOpenAI
{'token_usage': {'completion_tokens': 164,
'prompt_tokens': 17,
'total_tokens': 181},
'model_name': 'gpt-4-turbo',
'system_fingerprint': 'fp_76f018034d',
'finish_reason': 'stop',
'logprobs': None}

Anthropic

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-sonnet-20240229")
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatAnthropic
{'id': 'msg_01CzQyD7BX8nkhDNfT1QqvEp',
'model': 'claude-3-sonnet-20240229',
'stop_reason': 'end_turn',
'stop_sequence': None,
'usage': {'input_tokens': 17, 'output_tokens': 296}}

Google VertexAI

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model="gemini-pro")
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
{'is_blocked': False,
'safety_ratings': [{'category': 'HARM_CATEGORY_HATE_SPEECH',
'probability_label': 'NEGLIGIBLE',
'blocked': False},
{'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
'probability_label': 'NEGLIGIBLE',
'blocked': False},
{'category': 'HARM_CATEGORY_HARASSMENT',
'probability_label': 'NEGLIGIBLE',
'blocked': False},
{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
'probability_label': 'NEGLIGIBLE',
'blocked': False}],
'citation_metadata': None,
'usage_metadata': {'prompt_token_count': 10,
'candidates_token_count': 30,
'total_token_count': 40}}

Bedrock (Anthropic)

from langchain_aws import ChatBedrock

llm = ChatBedrock(model_id="anthropic.claude-v2")
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
{'model_id': 'anthropic.claude-v2',
'usage': {'prompt_tokens': 19, 'completion_tokens': 371, 'total_tokens': 390}}

MistralAI

from langchain_mistralai import ChatMistralAI

llm = ChatMistralAI()
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatMistralAI
{'token_usage': {'prompt_tokens': 19,
'total_tokens': 141,
'completion_tokens': 122},
'model': 'mistral-small',
'finish_reason': 'stop'}

Groq

from langchain_groq import ChatGroq

llm = ChatGroq()
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatGroq
{'token_usage': {'completion_time': 0.243,
'completion_tokens': 132,
'prompt_time': 0.022,
'prompt_tokens': 22,
'queue_time': None,
'total_time': 0.265,
'total_tokens': 154},
'model_name': 'mixtral-8x7b-32768',
'system_fingerprint': 'fp_7b44c65f25',
'finish_reason': 'stop',
'logprobs': None}

TogetherAI

import os

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatOpenAI
{'token_usage': {'completion_tokens': 208,
'prompt_tokens': 20,
'total_tokens': 228},
'model_name': 'mistralai/Mixtral-8x7B-Instruct-v0.1',
'system_fingerprint': None,
'finish_reason': 'eos',
'logprobs': None}

FireworksAI

from langchain_fireworks import ChatFireworks

llm = ChatFireworks(model="accounts/fireworks/models/mixtral-8x7b-instruct")
msg = llm.invoke([("human", "What's the oldest known example of cuneiform")])
msg.response_metadata
API Reference:ChatFireworks
{'token_usage': {'prompt_tokens': 19,
'total_tokens': 219,
'completion_tokens': 200},
'model_name': 'accounts/fireworks/models/mixtral-8x7b-instruct',
'system_fingerprint': '',
'finish_reason': 'length',
'logprobs': None}

Was this page helpful?


You can also leave detailed feedback on GitHub.