Sistema de numeração quaternário
As referências deste artigo necessitam de formatação. (Setembro de 2021) |
Parte da série sobre |
sistemas de numeração |
---|
Numerais leste-asiáticos |
Quaternário é um sistema de numeração posicional em que todas as quantidades (todos os possíveis números naturais) se representam com base em quatro números, ou seja, zero, um, dois e três (0, 1, 2 e 3).[1]
Conversões
[editar | editar código-fonte]Conversão Decimal-Quaternário
[editar | editar código-fonte]Para realizar a conversão de decimal para quaternário, pode ser utilizado o método das divisões sucessivas por 4. Por exemplo, o número 45:
- dividindo-o por 4, o quociente é 11 e o resto é 1;
- dividindo 11 por 4, temos resto 3 e quociente 2;
- 2 é menor que 4, então as divisões param por aí;
- partindo do quociente da última divisão e seguindo pelos restos das divisões (da última à primeira), obtemos o resultado:
Conversão Quaternário-Decimal
[editar | editar código-fonte]Uma forma de realizar a conversão de quaternário para decimal é utilizando o método proveniente do TFN. Esse método consiste em pegar o k-ésimo algarismo do número quaternário (sejam n algarismos, e definiremos a ordem do primeiro ao n-ésimo a começar do algarismo das unidades, ou seja, da direita para a esquerda) e multiplicar por , e depois somar todos os resultados. Por exemplo, .
Em relação a outros sistemas de numeração posicional
[editar | editar código-fonte]Decimal | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quaternário | 1 | 2 | 3 | 10 | 11 | 12 | 13 | 20 | 21 | 22 | 23 | 30 | 31 | 32 | 33 | 100 |
Octal | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 20 |
Binário | 1 | 10 | 11 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | 10000 |
Decimal | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
Quaternário | 101 | 102 | 103 | 110 | 111 | 112 | 113 | 120 | 121 | 122 | 123 | 130 | 131 | 132 | 133 | 200 |
Octal | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 40 |
Binário | 10001 | 10010 | 10011 | 10100 | 10101 | 10110 | 10111 | 11000 | 11001 | 11010 | 11011 | 11100 | 11101 | 11110 | 11111 | 100000 |
Decimal | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
Quaternário | 201 | 202 | 203 | 210 | 211 | 212 | 213 | 220 | 221 | 222 | 223 | 230 | 231 | 232 | 233 | 300 |
Octal | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 60 |
Binário | 100001 | 100010 | 100011 | 100100 | 100101 | 100110 | 100111 | 101000 | 101001 | 101010 | 101011 | 101100 | 101101 | 101110 | 101111 | 110000 |
Decimal | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
Quaternário | 301 | 302 | 303 | 310 | 311 | 312 | 313 | 320 | 321 | 322 | 323 | 330 | 331 | 332 | 333 | 1000 |
Octal | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 100 |
Binário | 110001 | 110010 | 110011 | 110100 | 110101 | 110110 | 110111 | 111000 | 111001 | 111010 | 111011 | 111100 | 111101 | 111110 | 111111 | 1000000 |
Relação com o sistema binário
[editar | editar código-fonte]Assim como os sistemas octal e hexadecimal, o sistema quaternário tem uma relação especial com o sistema binário. Cada base 4, 8 e 16 é uma potência de 2, assim a conversão para o binário e do binário é efetuada combinando cada dígito com 2, 3 ou 4 dígitos binários, ou bits. Por exemplo, na base 4,
- 302104 = 11 00 10 01 002.
Embora o octal e o hexadecimal sejam largamente usados em computação e programação de computadores na discussão e na análise de aritmética binária e lógica, o quaternário não possui a mesma importância.
Pela analogia com byte e nybble, um dígito quaternário às vezes é denominado crumb.[carece de fontes]
Frações
[editar | editar código-fonte]Devido a terem apenas fatores iguais a 2, muitas frações em quaternário possuem dígitos repetidos, embora estas tendam a ser relativamente simples:
Base decimal Fatores primos da base: 2, 5 Menor fator primo de um número inferior à base: 3 Menor fator primo de um número superior à base: 11 Outros fatores primos: 7 13 |
Base quaternária Fatores primos da base: 2 Menor fator primo de um número inferior à base: 3 Menor fator primo de um número superior à base: 11 Outros fatores primos: 13 23 31 | ||||
Fração | Fatores primos do denominador |
Representação posicional | Representação posicional | Fatores primos do denominador |
Fração |
1/2 | 2 | 0.5 | 0.2 | 2 | 1/2 |
1/3 | 3 | 0.3333... = 0.3 | 0.1111... = 0.1 | 3 | 1/3 |
1/4 | 2 | 0.25 | 0.1 | 2 | 1/10 |
1/5 | 5 | 0.2 | 0.03 | 11 | 1/11 |
1/6 | 2, 3 | 0.16 | 0.02 | 2, 3 | 1/12 |
1/7 | 7 | 0.142857 | 0.021 | 13 | 1/13 |
1/8 | 2 | 0.125 | 0.02 | 2 | 1/20 |
1/9 | 3 | 0.1 | 0.013 | 3 | 1/21 |
1/10 | 2, 5 | 0.1 | 0.012 | 2, 11 | 1/22 |
1/11 | 11 | 0.09 | 0.01131 | 23 | 1/23 |
1/12 | 2, 3 | 0.083 | 0.01 | 2, 3 | 1/30 |
1/13 | 13 | 0.076923 | 0.010323 | 31 | 1/31 |
1/14 | 2, 7 | 0.0714285 | 0.0102 | 2, 13 | 1/32 |
1/15 | 3, 5 | 0.06 | 0.01 | 3, 11 | 1/33 |
1/16 | 2 | 0.0625 | 0.01 | 2 | 1/100 |
Presença da lógica quaternária nas linguagens humanas
[editar | editar código-fonte]Muitas ou todas dentre as línguas chumashianas usavam originalmente um sistema de contagem em base 4, no qual os nomes para números foram estruturados de acordo com os múltiplos de 4 e 16 (e não de 10). Existe uma lista remanescente de mais de 32 palavras de números no idioma ventureño, escrita por um padre espanhol em aproximadamente 1819.[2]
Os números na escrita caroste possuem um sistema de contagem parcialmente na base 4, de 1 ao decimal 10.
A Curva de Hilbert
[editar | editar código-fonte]Números quaternários são usados na representação das curvas de Hilbert em 2D. Um número real entre 0 e 1 é convertido através do sistema quaternário. Feita a conversão, cada dígito não-repetido indica em qual dos respectivos 4 sub-quadrantes o número será projetado.[carece de fontes]
Transmissão de dados
[editar | editar código-fonte]Códigos de linha quaternários já foram utilizados para transmissão de dados, da invenção do telégrafo ao código 2B1Q utilizado em circuitos RDIS (ISDN em inglês).
Referências
- ↑ http://www.matematicamuitofacil.com/naodecimais.html
- ↑ "Chumashan Numerals" por Madison S. Beeler, em Native American Mathematics, editada por Michael P. Closs (1986), ISBN 0-292-75531-7.