Saltar para o conteúdo

Conjunto infinito

Origem: Wikipédia, a enciclopédia livre.

Na teoria dos conjuntos, um conjunto é infinito se possui uma correspondência biunívoca com um dos seus subconjuntos próprios.[1] Um conjunto infinito pode ser enumerável ou não.

  • O conjunto de todos os números inteiros é um conjunto infinito enumerável.
  • O conjunto de todos os números reais é um conjunto infinito não-enumerável.

Teoria dos Conjuntos

[editar | editar código-fonte]

Dentre os Axiomas de Zermelo-Fraenkel, o axioma do infinito garante a existência de (pelo menos) um conjunto infinito. É possível conceber sistemas de axiomas onde a sua negação é explícita, ou seja, em que todos os conjuntos são finitos.

Referências

  1. Wrede & Spiegel, p. 16.
  • Wrede, R.C.; Spiegel, M.R. Cálculo Avançado 2 ed. [S.l.]: Bookman. ISBN 9788536303475 


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.