(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 286179, 6572]
NotebookOptionsPosition[ 261444, 6151]
NotebookOutlinePosition[ 261888, 6168]
CellTagsIndexPosition[ 261845, 6165]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Gyroelongated Square Bicupola", "Title",ExpressionUUID->"bebbcba6-4d33-403d-85bd-1522d079e6c6"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"8e392c9b-7a17-4c1b-b617-0ae4f5a4f844"],
Cell["\<\
Eric W. Weisstein
September 13, 2023\
\>", "Text",ExpressionUUID->"6115558e-c9f2-4e22-9496-a3359153a31a"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\
GyroelongatedSquareBicupola.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\
GyroelongatedSquareBicupola.nb"], None}],
"."
}], "Text",ExpressionUUID->"8b296164-cf90-419b-8329-8679bff0bb47"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/GyroelongatedSquareBicupola.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/GyroelongatedSquareBicupola.html"],
None}],
"."
}], "Text",ExpressionUUID->"dd88aca0-1949-4a2e-9977-b3098de66d57"],
Cell["\<\
\[Copyright]2023 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"fbdbf9bb-7b02-4f6a-9378-199f9c3015ae"]
}, Open ]],
Cell[CellGroupData[{
Cell["Solid", "Section",ExpressionUUID->"61bf3932-5a3f-4999-9cc3-259f1988049b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[75]:=",ExpressionUUID->"2116699a-8443-4a22-8a5b-fb6fd15651ee"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output",
CellLabel->"Out[75]=",ExpressionUUID->"2a2fa0d9-43e9-4bf3-9511-f805ecdc036e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[", "\"\\"",
"]"}]], "Input",
CellLabel->"In[76]:=",ExpressionUUID->"be6bf588-3b8a-4eab-9e23-300a9680fcfa"],
Cell[BoxData[
Graphics3DBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, 2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {
1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, -0.4301477849314858}, {
0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, {-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883,
1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12,
10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {
19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20,
9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3,
14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11,
8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22,
5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]],
ImageSize->{360., 360.},
ImageSizeRaw->Automatic,
ViewAngle->0.4406947829191935,
ViewPoint->{2.01799204443928, -2.557999641733777, 0.9134253891093921},
ViewVertical->{0.3003544565614135, -0.16419816432994871`,
0.9395882945494656}]], "Output",
CellLabel->"Out[76]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnXeYHEd63kezGQssgA3A7iItdpFzzmGRM0CAJEiAAJETSYAgAgGCAct0
YADzkcdwgTweL5HHfEG8k3C2LOlsxZNlnc46P7L0WNZZsmRZ6ZEtS+up6uru
+np+Vd0NPPrHPjzPDHZ6Zqre9/u+963q6jCb9p05euj4vjPHDuzrWHNq38mj
xw6c7lh956nSpoqfKxSKv60eHYXK0t+9hQI//U6h8LMN/x9s+F39Z1X30aNH
ew4fPqweV44cOaL+L/yD9bnf1H9WJj9X7FUfrAi/or9WVK8KFfrv8N/fWU39
wNdUpd2U+khV8Ole01r41t9bDf7rXA3W609X9NrwiupNG+P3cjU5IGhS/am5
6yajdv/WavdbudodFLVRGf31N1Zr7+dqbWiAUm1WL4PvBtvCb+pX/9Pq4Wvl
5RF91tFNJ3RTBQH6K6ubN/WfNdRNb9hdUFAVUZvq3xjIZTX09T+svj53lX1N
hHZr5Tb9+b+0+vrMVfY1Hfqqg77+wurruavsa6560qXVFzL351YPT15lD4uh
Xerrz6y+Hr3KvlYE7YqK6Bf3FZnSf7P6uniVfa2DvhqiaNo93HOVPWwOehB1
MCDq4adWD6f1nw4rqLI1Guq0sD1qqDH660+tJo/7miyT/W5IaNzuf7XaPZKr
3QPQblPU7p9Y7e7L1e4xSF5z1O5/sdq9JVe7JyBlg4JtwmX/2Orhxlw9nIEe
BsO2P7J62JKrhwtRHNqg3f9stbsuV7s9kEurh96wMv/Q6mFFrh4+BVkdAr3+
J6uHxbl6uAw90Mj6E6uHubl6eA5iPjzuIbKwP7B6mJ6rh89E+e2I/rJbm5ir
tc8B+7jd/2i1OzpXu29CuyOjdn9stTsiV7tfgwx2Ru3+vtVuW65234W8jYra
/ZHVblOudj+GdkdH7f6e1W6/XO1+ErUxNuhB+NPvWu3W5Gr3+5C3scDh31s9
/FyuHn4FMjgOejA7Ov87V+O/Do2Pl41rWj8M3vrbXI3/EFBOhMZ/O2j8L3M1
/qMooVMgBcEeXEGP8EW1VX8yaEW1F05EijAP+QNoj/r4jeDjwchT7ZruFF3d
/BE0OTXeFjnfr9uo8s+q/hQyPC2KnWn8P1xl4/8dMjwjavzXgg/91lU2/tfQ
+Myo8X8XfOjfXmXj/xA1NDv6K2ir8EtX2eQ/Q0LjxoOFgMIvXGXj2jiqIJdz
gm3CzgLLKHz7WvqilYO5kJFfDt76QD/nmpLrbhqhyfmw7d8E3bzt66bMI+Jx
TadgoWxXgwiSXXgrf7sjIN3UQ7BgU/hC/h5GQw+0e/n9oIdX8vcwEZK8BHq4
Erz1Qv4epkEuu+MeIpf7xaCHp/L3MAd6WBbl3LR7KX+7i6I2VkR/BeotPJi/
teUQ1bjdYAWucG/+dtdCBldG7X432HA2f7ubod1VUbufBBvuzN/u9ZCtNcE2
YWHfCXo4lr+HHRHKddBX4ImFA/nb3QMZpB6CVc/C7vw9HIIe1sse9PZvBj3c
lL+H2yGrG6CHYBZe2Jq/h5MQkc3A68Ogh41RsrLNzXQftCawBfr4wCYYNR9+
RDd1X9T/1riByJSCJWeTgyo7QtHH4lYSnW+NWhat1AjUhWCNP/qibu0CJGlb
1Np7dmuyy6KMS4zvHmjx+qjFd0WL4kOJFfMY492QghujFr8RfJvUkViw1tt1
i2ejb98U/fWOux1rMTpaSbHWBmVg4hbfFi2KD/XRHwomReU1dyd842YZHf3q
a6IDEcx6SSNOz0n48A7g/NXgrbXwVoOEEofjOHz4Ftj2FXfb/V2474AP74q3
RXn5smhbhHCgC/dtOhtqO/nul0SLInCJCWVcYMegHWo7WIkJByVBrgXIWau8
EsjeuO3IUL5ota3Jteq/XEV3AJrdF33XbizBoVWCj1N2AFgdiFp8Q7Qoum0P
tpUnKsZzKPrr9eA7q6GzoS5kVrgiGnGLX7Ba1BtGuPDcCu0cjr72eYFMfGiE
C9luCMeRqMXPiRbFh0a6MO6EwByTH9avXgvaWQUf75Lb4jIn47gNtr1qta2J
jIk/1GtG9aDF2D1J8K8IjCKiiZW2mP+N8OFE23r7y6Jt3wpYjPYG+PBxaDs4
WhnMlXmNqhz3NmibBoYXrbZ14Ca70F4H3d8FLX5aoBVvTXGh3Rx1b42JkRW9
IFoUlKZKUHFtbYLuT0e9mBZXAKUZ8TZpnBugxTNRi8+LFsWHZukPuYyTHCye
YDznbna2BK+j9atmW8H6dx+QPBd18KzogJZQRLbMglOPQd/b3jJK/a92utU2
3fEF6PB81OEzQePL4UOJxRTN6Pt6W7+ow5lDxve2NzT3bllye++x65/W/8+e
sAaB3B11ekFS0a+eEkBEaBcC8+/Foe0xQNSZFnO2lqJmASpUmucEsOKV8syc
hK4peJfdSBdByD4x6HV+SsgU0gpAWquei+plCa4VP/UoKqDGi0RR3Av4nhT4
aIWmx+wradzfsvCFkawy+NRrlVaFr2+Er6jgFSNcdIg4UeW6oyeCt5YB5GDV
BTT5PoCrAXADXOAOQm8PALjHBTiR1IQ2dFJtXEoDClEt4GqWuEqZNRntNo+9
mrlq80Ho+pIb1co4ldH2dyBadQbVpvGLdVUpVO36uUaXntpGat0FfRLETwmI
5as+icB9DSDWA8ThFkSXodwMcB6Kt0UDVnCSTLh4KEphLUTxrRjilRBiP4DY
md1aaPh/WD3pzEt8gk5iB1ZTetMKoaq9EqZCg8GnXissCtmYNEOh02YejVA9
4ka1AaL2BUjsAEA1waXUxHqVfvWpCM3DAo0I5Eb5Rf3lzwKaRkAzJU2f8X7D
Y9FfQY0VlgLgLfG2yGBfNtsK1lDVDAPAzAyqpEEnBvagAAaLSuCwL1iRCoen
FkA3N4Mgl0B2Hjft22P9RTfObTKouuCfh2QOBogLswtyHiB9AvIZDBUhsfJF
q4QIno6RRtbRBsPC0jRpzoIOL8O2+934tkMkL1uRDK2jHfCtcIk0Pv77tGxe
079PoPGteOntj0FehwKaNWkinQQdEr573fgSO786io8CvmEwEGzKINxx0Oez
sC1YcA0P1qUukJkRubtgecsIgLg1g3pHBW0JTTwHEM+7IeolFHKZ+6xQhi7T
AThvzC7hYdD/CzHcaPQ/J+DSIp6QyL0W0jCinYB0R5qE2wGf3hnX8vGg2mcQ
2FI5B6hGwXi22yXc+Bz5l6K/gqX45E6LfpVY7dOROWthCOe8owHDPheGRiAb
oznrRnMIInIXRGQsDAqH0szDLICLso/P/DsjUJWvDSZidAJQjQdUt2WwjD4A
7OUI2Gk3sKMQLrMqHrRosqdxEboT2VVYAel6NQJ5KvjQQvhQYmVRbw+Bm8jp
6E0CfKdi7VUntRei0/2H00B78nHSjclaSYwWMg9CRqfAIHU3+EHvpk2brnR1
dRUVqNegwzsFFpHEsJLsJO4FLNMAywWTvyP7TvZuXrEvrLBYiS8DlhNuLHfK
j+u43JrIlUIx3YNFLTmYbWmKfFF2p2EEix+FBQD8FERqJ0RqBrh4gK6i9+jN
j+hoBapM1+bzAPEON8TTEMCbAOKsjBDrMwznNLu4TUAUb4Xubkfx+hhiNJ2d
44JY7D26+8KA7M7xJIA4JvAJ50scN9ah3WqFMJzOzoURKQyhCp8Ko3rVlDZ+
Px7ji+YSZkJDp5ndE2+LZmebIMXzPfgsjZR2cByjaLxP7EGjZzE0EVsDkBZm
hDQkTbjxksYRAU3kOLE0qGMbHu8rWNPYxWD894AWRmaQa08E7LAAJirMLAsK
BaywwhXOW5e4gGkFjMkgzfsjOMHMJtwdFSnsgTh1Q/a6PXGyC358dmnGhwcO
uvE9BOFaBPiWw6BA+CbHgtQf7gnR3CM70q/2C1yivh6GuC2wcIWD1QoPLrvq
p5ptKm4hLDossE9AEpUV7kjay+7h2bd2qFYBpPNQ8tPNNvW54R2Tu12Q9gbd
08m3waIRGMQ0wLUaPJ+kGOJSn1m4bKeurMQRCt3XHjeuxyF7+qgizV2duLQS
Z5iCV8VeQqMePQ5AtwpAopyejHMXbZ+UKCcVo3WeGNllHsSoKkJ194Mfh8jw
bLBdApooq8SCkI7VeEjfBg80u9IJmnqoFu8HaMHZQHga7TMQtdEAbRMMPW5o
1VqEpYqPoJnIWeiisXqnG92zELiuRE4Vrs2AjvQ406BT3w2RJdFpO5WYRDDD
RU47YiMgYteB3Z+Pan6W5QwGRaGon/W26F989uIOAUnU1wsyTDp8QwHSNhek
ROnPtOxhx75LAlzp9ZWw3zhewaph8ti6fvVSvC3y1NYYXDRfvSEnOKv4S6+C
51CfEtxNFji9QZ/QQp7alKgtNU+90YPLrnzCVWlwhd4vcW0XQRNF9ooMpC78
RsjoTTAQnYPCD8vNkmXJP8rLzehTDOE3CJii8F6TH9fww/MUbZg7MsKcDaqo
hNwmDgzrV8E+EC7Ifw6iGZ6qWbBmsre4YGrJzgFwVRnBbbPAWefPycjVWpEL
57C3wJBAqpgNkq2GBNMh9a0icqIOX5cf13yqIMG7PTBtkcwGkVRDDC8CzOsE
TFGHwXmSNcJjwsSGEPdcA8QagNgD4QoO1AaXsCUq4K3442qlSUPaB8MWyWIO
qLcWkkuQNlmQdOVZR82j2Ox3AdGFPw8KvwaGA+usg2hw3ygiIpB9EYAc9ETE
Lve5AKkWkvRgRFsCEdXzevCh4A172noQrN+HxhZfHVh/jCY4MG+fNBcVyutW
WMI56xEPELt250Lt9oFCiYGst4BYp+HKrByD7u+GOp3n6d7OykNRb+tEHER5
0JkBt7vWcx1AbMHUe4GsFUBwkAsToiDc4V5YLglmPnTfF9IQdx+s9uB9cl6F
OJzwxMEuzPkgE4qD2RUXw/4qC1I8a0oAuRNMlQpzPiikrxuICMBKEZvyg1KJ
eeRdOSHZxdoPREuQVghIolpeTFSLmkKeAkhUtgs8kGyjfSSGFA13wQkneDHm
pyFxZ1yQdAEvBCANkK5HISfdAgjuOtlATiogRYWjwpzRqFxGvatgKQBqoeks
FPcCUFn/jCCXukGG+5wFa2J4VIIsKoxaVcXekY3tlb3LRs8sAZ82brIGvnPn
id7Jk+dqqQcLsBXRebcK8p1AZiEotT9YhkUmGmOXCDKiGsPd+4I1pbw1IlMJ
ZCoUmWLv/rmbansfWne4NP0ubex99vxjvXuvu0VRK/Z+/PFPir2XLr1Ves/Q
jA5cKZ53gNh89OxcxWvmhlTiRHX9yjp5Jyqj7ekZ0qQGalJVEanvv/7NkFhp
IhoyKypixYjREdDqInC0AV5GiwUjUXOXgdFmL6M4TUM0I/1aMykxKn1EPQfh
LnFSj9L0SLALDgrYIjvgYWkbwUAoy5jlIjfLJy2W4UC6MmMxjjIsS39qnQX8
gmeTP82yn36uVDRtHZIMd0d2t9jD0s7lpYjlQsESz6Ozc7koY3VOMSzV91Rl
2ixVtSo2it/ANA3uBItZBH7Z6GUZrMaHl5+UL0vTQdEMFTvPsLQ0WFJkwFLl
VuVOsWx2VqyiUHpsB6dZDE7TCMN6zHK+YCkq1pR1kOSykzEylO0yEGc1lG2b
fq7R1FU+7ZyGY+C2nGztGUOYLnuCN9fN2z6hLtwH6cxYw+uBci340dDsSt0A
zrQE/LcJqvkxKN45gnn5yd6Jum7PWNc3gEfVQbI70tS7NnKmpeBMzRlZBgt2
hcnw1kPAcmDGkr4V1EssR6WpdyV41BLg2wLjTYKvLtxZgq+o5wcT9RxdBZKh
no8A33qo53EZJNztoWzbcguk+HGgPNNN+SKkOEMN3wXq7QvZnZRdvQvAt5aC
bxHpJ4DZdEEazgyovBKSNo8Exwug0wbI6NQ0nc4BX+oGZoOggolZMIMPj1oK
xZp1W81MVaJi8DDMFhogVzPTlDjDw8P210GQIevsoGiHZKrgISjaPNRDMXgI
FNYfeMzLoLApkXUuAysZ7CKgJwIe2MFxkcpuHf7+TfpRKp8HQS0DoZIWetSi
K2k8GEM3EGiFmUxMIBjQ8M7OtjL2T5nXu2zEaIW6Bwg0QuiXunaNRoO4fcDt
ScnlCPjk3MAvgoabIfLL02p/pIeAbcltUDoxgUmCAJROVVQ6Dy1eH5IoXITK
b4bwr8lQ+UNBxMvBjPxEJqYSiTKhiKj/S+ALDwCRFiCyIU0IgyP9rgADagcj
Dfed7altcHJFYYKzniQL9dAMQQ2Doag2u9TQBDJeDmpohxw8BWDHuXmYI7V2
WZXCqJ4rQnfSbGiwa4XMbEsTSv+M3IZk5DZWcINKq7BzFHEz0hHcCtYAGHKz
d5dvyiCfevABojcUSjBBT/MYc+307gFRtcN+8s40UVWBNawAjxsKqaPLs4IT
hJJ3kXWWZQVwOw9SGwJleatLaqXPqTQZSoVV4HRE5xnIR1cqHZGqkI7xPk3k
HKhsGDjHPlTZzJkzlePZO0U2j2Ew6BOPTsEjteQqDY9CMA3TDM4Cj+GQlsNG
URcuPNK7Zs1W786ObeDDYBpgnf8ezSBHuqmEpyXbFVYFxncW1OOmUquFb9Kk
H0410cGR4VBqmpceVA2bxA1tnImpAr2cAb10QIEd0s8VNptSew4N0eHiEV4m
HdfO5DQwGQl5OWiYvPHGFV1m6lWftDXsmeBqHeDYMaMRglFqpVUDo1Mgmi7I
zYEA/VNPvTHAGpCsGhPymQZOQMl5LqIyXFDB23wQFdvHTsGI2gXJOWCSoxKj
EqReNaUNQxOBUYeXUXDpKN5tncqtBhztJNjAqIyMBruEMxasbSSUmbkqV8xN
h7g5UZZqwdruBAmNgYLbD2YwJE1CXWAKIyFLzwOBdsEtVUy1IKYTIKaxkK99
YA8jM8hqBNDrzEivTdAjgYlyJHrHgd54SN1eoDc6TWDt4H5dMHmgi+KCU3LD
X6BKLcs6DzdbauMhdXsjH5zgEthgsIpOmDu8AEwGXx0T2wbvAIFNcDFJmMbk
NIE1AbcuqMBPg4paBDcSmKjAPmCItwG3SVCBe8A8ZmQQWH/wxlEZ6TULengD
LTt19UDvGAhsMqSO6M1JE1gfMI/R4PsWt2hKG5xbHl5ckVqW9eD7x2B0DrnZ
+7u3gnksdEmt2sPJzpc+sUmPyulMRBHWg1UcBauYCru2uyOr6E6TVRF4jPHy
aBQ8RCFStfUFHkdATNOg2naDUaz0H0Kxrp6JeNg1po8H6Rt3VyoylcHlDPbp
z8FPq0UEU+XUF5zwMMhpBrjFLiC41iIYOkUpE2MhKReiUqpSZHQy9KXomlZA
UNOSaTIER2WsxH7gFweB4EzI4C7wi7Vm90oRnLNgqX5MmrlQpa5ALI9ByjRL
zSpgrt4dABXpoUq5bPBQtUVHVG8B+1hr9pJDqj/+6T/1Hj9zsffmI3f3Pvzq
+7qfktuPgdnGjoy5HZHKOlWiDWCaB0Cis6GCdwLrYN29WrC2mBd73/uNPy99
ReU8tJxRMEtZlzHvdDqRjABpWJR4A5jUfojAHMj7zshs1xreSrVvvvuLEW/1
d4lsheGtkh/OM2mIn58x83SHouC24cmbIOtXRtpBbQfL98h7H0h7HmR+B3jX
arPNikDpVfCsvlsKgA5CWAJKAyoUpbRjKMZlLIFNKaHQAxfNF/qDee+D+cI8
SPwO8LZVEIBKEwAlBUU4oB4HwOggCkDB+teasRZ2pQSAXUBoYAB43x7wvvkZ
Q7HSbFOfUcpXQagyoQg9UAWhCmRBu5a1GWvhjijhjSIAZAJCDBSAW8EEFoIY
bgIbpABUQwCqQQxWANR1T3o67Ex+mE07wyb5nVAXNAQMhCFgNxjBIkj+TZEB
EuMaw9iYoOZaA9XfGVd/Tzgb0z9QRzdSsdnZ2hYFPRDMbRdwWgL53A7mthzY
1YG51VoFHY5vtGD3FNSlTBtpVpSsj6Kt2SWQNqK4zGyzRu7S3nC5fdUlNKtK
lijSz6RKiuKt8CYPdmU2gkPfAqpc6qFo21I3UKwHVfaBGu2AeRrdVtMYz0i3
+EShNoHx7ACKy6BQbwDjIYp9gWJfKNThMBFLo2grUJQnEbsZFLgccucjZo+u
/UCBfaE86VjT4xH6JpExoTsqymawy5th2hASs5cZbpA75wk6DUCnX6IUXXQe
A/SyFEltohSbwVBuAkNZCasO14OhLAGK/cFQ+sM+wTCYD11yU+xwq00UJVHc
DmpbBUV5PRjKYhgWBoDaBkBR0rH2NIq6XmkMbwGnvBHUtgZsZBsQWwTEBgKx
gVCeRIx+lVvmjnQnynMQGMr1QHEt5G4rGApRbAIFNkJ5DoHytC4xjGqwSVAk
BYry9FG0FeikqK2FiDUDsSaYfLfDEOAhNgLeIs8cDJ65DXS3HsrzOrCWBTDK
tUB5NlvlWQjWW/BMMrpi1aZo604U5WAwlK1AbANkjIjNB2KDgNggKMo2mKHE
10s3i4yR2kQpErHrQG2bIGNbwFDmAbHBsHswGIqyDdRGv9cgi1KoLbyFoV2U
reCZ18FAvglytxkMJcydPd61gu4GQ1G2QlF6KA53606UZxsYymYwlM0ZKc4D
im1AsQ3Kk84k74FUSYqphUoUN4ECr4NC3RR5JhFrB921Q3kOhvK8mI8YlWc7
eOZGUOBWyN0msJY5MCwMAYpDYEmCLmOgm/Y0C4qkQFGe7WAyG4Di9ZC7jWAy
s4HiUDCZobB/RxTvd1OkW7RTefoo2gq8HrJIFGcBxeGgwGFQqHRZWHy3tBZB
LLU8h4B70oWMNzjPaZfWQsRGALHhUJ7NMGuhGw42p1IU5TkUrGUtUNwO5bk+
spaQmD3ydYDuRkBR0oWLtOIniZHuRFESsTWgu5sgd+vBWmYAxZFAcSQsOjTB
rOWCm2LipzKd5TkM3HMNDO4hRXsvnShOB4qdYC2dsKfXBLqjXx+WFFPLcxhY
y2qwlh2wv74OrCWkaI+BXaDATihUuir+PKSqJZWiKFSiuAoUuBMKdS2YDFEc
BUsSo6BQ6fYG51IpigSHEbELdTj46ErQ4i4wmTVAcRpQHA1aHA2FSvepoB+1
NhSHuLUoCnUE2M1yoLgbsrgm8tFpMECMAWJjYEmCbjMS/2bjIEEntSh9dGzd
OekkrGUKEBsL1jIOJtV0R5izwKPFTZGKsgPck27MsAeKcjVYy2SgOB6sZRwU
ZX8YIM6kUiTdiaLsAGvpBop7IYtEcRJQnADWMh7KswHmL2eAh6FIP79DhUoU
l4Lu9kMWV4K1hBTtMXAiKHAiFGo/KNTTqRRTC3UkuOdSGOb3QxZXRtZCxCYB
sUkwqSZid0GCBqUSE+XZCSazGEzmgItYwmQmAMXJYDKTYXGiHwwLJ90U29zl
mUpxESjwEJTnCg9Fe+SbAiYzBcqTbvGnKeoBYrCbGBVlF7jnQtDdYcjdCrCW
8UBsKljLVChPIka/zi1zl1qeXWAtC4DiUcjdMrAWojgNFDgN9v7qoTxP/MtS
tBV4FLJIFMfBADEdKE6H6TXdEtRDsTVjoY4C95wPCjzmoqjdk4jNAGuZCeVZ
B8Tox6DTiYncjQZrmQvEbofy7AZrGQMUZ4G1zITypNva3g48BguKqeVJFOeA
Au+A3HWDyYwGirPBZGZBedbC/CUnxXBPyi7PMeCjc2BwDyna+/BEcRSMgXNA
gXNg74/uZ32bm+LgjIU6BkxmNpjMCdiHXwImQxTnAsW5MNEmivr8az0Gtl47
sVmgwDuhPJdE1kJ05oPu5kJR1sCwcBQqT2YstSjHgmfOBN3dBdayGKylC0Y+
ojgfipLupX91FEXuxoG1TAeKpyB3RLETKC4Aa1kARUkUg6qTA4ShOChjefoo
2rrzUbStZSRQXAi6WwiFSr8qcTgfRSrU8eCe00CBZ6BQF4K1jIQBYhFQXAyF
Sr82cgh4tAqKqYU6HkxmKlA8C1kkih1AcQlocTEUKlE8mEpRJDgrxSmgxXOQ
xQWRjxKxpUBsCSxOVMD8Rf+Grh4WzAW+LRmLcgK45xTQ3TnI2AKwluFArBus
pducbW3t8+mHmbEczMFHpGci+Mgk4HPew8f2kWEw4C0DkS0zfKy5tH6Y6jsA
AmoVzFK1RcwmgrYuQOHNB2ZDgdlyYLbcMLMWIGxm+1OZ4U9r2jU4CYxxAkjq
XsjZPHANYrYSxLVCP1eKGowZCdiGUXNGVU0CkxgPjO6HXM2NTCKsPXsMIx4r
DY+w9kxm9l0VD1FzPh62mu6HzMwFdxgCjFZBza0yjMKaK7FSjPYA7DbBSJQh
1dpk8LtxoKIHMjJqB0argdEaa40rTMatqXRSpTMFTGEM0OmBQpsDptAG9r0G
lg7WxgNuT4hvt3rSnm3uodGUscqIxGhQy4OQk9mgfyKxDnSzJiZxRZBI1FGb
mw7lZCrY2WgQTUjH3ksmOq1AZ72HTilHPdnppCpmKnjAKKDzMOwRz4q8jEhs
AJ2slsvd3ZZOhBgkCdKJKDEi0QU6eQRKbBbIfhAMMRs9dIzs0+g0ZiyxaeBi
naCYT4HsZ4LsW4DOJpD9Kis7U2bO7rXoCMzt+ehMBwPoADqXIDtEpxnobHEO
nMFuQ4nOlWx0SDGi2Hx0bMUQnRlgAGF27DFmC8ypQzqq38df/XxMR5vyEEFC
VN9ZyMkMcLERoJjHocSmR7In6NeBTlZYA74qrNKjm9APzFhRM0DvwwH9E5CC
6aD3JuCx1cNDCaaUAsEjUTntFiNNkYZG4jEMlHEZsjANeDSCDW8DoS9P5OPb
v/E7qu09KTwSb1FdzQTrGgbiuAyZmQZaHwiMbgCtL0tkxghkD8hBMkpVyiyQ
+xBg9BQwmgpyJ0Y3gtxDRqpflZ90RgPc6hFVR4zaQT3PQNVNAUYDgNF2UE+w
KFAlqm7XkWM9hQL78hCLlpYQWcFsMLI2kNCzkJ4pkZGFFOwh5SYPhbDMFAVj
AqkUMqhnNvhBK5B5HjIzGfygAWjdDH6w1FoECDNjUYt9eqjgQ9oRlebjY2vn
eUjOZHCDfsBnp3NdTabJeByanElTf7eAxIk+s8HkBoOAXshJyx5+doIlhLRC
S7BsIZWWU0BzwQ1agMyLUHMTwQ2IzC3OdetgSa3kAklC6WkiNYnqI2bNoKaX
IE0TI2sgPrs8fJI1ZzREvi35kJpE2c0Fq2sGNYV87D3PieAO9eDbu8EdFiV2
C0qsCkX9XBGZn/q3G+RjDKMB3iIDnAeG0QQUX4a90QlAsQ9Q3AOGER4nspIX
USxY/9Io2ioTtUjEGkFlr0AtTgDLqANiez3H+Ch3oXWofzR4ydyR3ER5zgNX
HAhyew2MZBwYCVHcB8Jb4MldGUX7pr0NoLszUJQLwEf6A7HPQu6IWC2MYvs9
xAqx3aPuaPfD5K6fW3eiPH0Ubd05KWqrJGIHwFDmQ1FWXAUxW22iFBeAUzaA
2j4PpTgWbKQaiB0CG5kHpVgBNkJrRDJjgjMV5UIwlH5A8QuQsbFgKCFFe5g7
BIYy15M7W2003kmKpDtRlESxL+juDcjiGKBYBRQPe07WoSymeaaxlr5u3YlC
XQie2Rd09wZkcTRYC1E84qFYsKwlpBjukmWjmFqoi8Fa+gDFL7ooamupgsHg
GChwNpRnpcta7HvSe+iIoiQ6daC7L0FRjgJrqQBit3mI2UXpJJbgITNGuhNF
uRjcsxZ09xZkjCgWgeLtKac6hrmrcrsnUayHeqWiXALWUgMUvwJZ7DJ+eTjx
cxyG3nGQ2yxP8sA0PcxS69PHzJbbVyB5nYaZ5Sj6YYa9E8BspidnacNBOjNR
lkvAK6tBeV91MqsSzAyrwklQ2wzr0IHZOY1ogdpEvQ0XtATj01CK3WAolUDr
61CKIyN/TExOfJwKlufn5NTHLS9RhMSpAuT1NqQqOO+tMnIQM5TdlXLqflh8
1W7D8DBKLb5u8MQKkFXIyN73Ds/kU4Zh2BROeejYLuHUkv3TMESCSm0ZeEMR
SHwD9q47LBLhzOIUzO2neXKSZnUyJ6QcUWUBnWqbjn4Y1bwHxTXCsDhz5rHe
hy9d1vjPgFamQiqqYX7kYVHn1oqorIBFlW1roUYKH4Dmh1mj6bHjp3pf/8qH
hbMeCgVL7tUgd3JmSSG1rlZYcg+hfwjRD39QO5wIqAx87wc/OgtamAJlVAPS
vjr0ooxs9EYFiH6IGUOsaUzIoOCjYNcQUSB3GiEokBJEDS03NaSUoLarhxJv
CX7gRe9BIbUZPslbh6vO7gZlT/akBJRNfGrhLfeYWKv5qG3qvd0zJvRObWvp
feDgTb3fe+kh9X9F79IZE4u9Ohyq5ip1vpSLmceXIY2tZpKTpF1Ko0rnOZDS
JE8my9zA/hWy2owluMg4WfjzsTbny+uXFHs/OXB9qS/1UtH/xx98o/Th0nOF
ikSJttpYCkX40CEpqpAUFfWiCsUXoALoNJei4W/CoV/d7YlJwbKXGre9iBCM
SI2OqO75ieio91QlmOhUQXT6q+eiik5RbSumFQodAgijY+9L6+gUleeeA8VP
hFljbb6Y1GRUyFxr1EjEpLQ7Wh6QwWnl4ggMHdWmsz7CO88bQxRl47pWPZRS
rdvXc4ao/DB3UUXH1FMYn74mPqXa0SFQ8enIKSc69YrOIglvSK+mTcZp0Fwn
gLnWgrnuNfqwRwQZl1Q5TU/GRdWJikt/iMv4nEKiU4XprJQqiAtZ73hPvaQN
Oh3uuJwCSU11xaUR4jL9KvV0FuqGzp+oAhs+D2sm46Bu6tyWQ/GpzqinSa74
DDLxUdtKUdHxmZ9TT8ehbvpDXKojA74H3GUcVMu/UDTGu6LRBtFYnlNFByEa
DRCNGnDd8564FKzBus7luvYPwlZn1E54laY1eSlluBSOoRCN9dlrQ09e6VZM
fWHqUuuJhu21Yz2aAa8V5GWVUFxElYyyJuaJSV1pXzQIjRqW1IRWheZ6WSh6
gmvOAVPzefOIZUN3+6uH0NSB3d4DdjvGI6CMoanKKKAO/5y3E6JzS1Q42WS0
ARZj+niiY5vtBTDb0VA4fWA/wERHDNKe6JCghvvnvKMhOgdzWi7dV74OpjC+
6NAdzuza6QPmmx6dVFkN8cx+x8Ps93hO/10IsqqF0PSJRqN7PQEpWK5LAaHR
aGS+gLS65rqTIBpnr3LuMhN8mA4b14MPXwAfHgVyqnfvC1B8KjPKaZBrtJ4K
8Xkgp5AmQrXQ8cq+YML3ggl3eYRUZsJ6tO5MjYaoliZXNGbATPdSTu10QjQq
IRr9PNGwTbfTUyVgukIqskpSVTTAFZfZEJdnrlJF7aAiOkLaD2z3PnCZTqiW
erfteuIjHDm8p5qtogZXfOZBfF7OqaJGHZdqu27sw6r9I6u9H4IwEoqkb74g
VGQUT71rqrsIprqv5xRPHx2Eyqg4zCxlADjqfeCo9g1/wwWovuCoeyHhOcNQ
65nZLoVIfDWbXGqTEVEB0dvUCFMKxUAIxf1goh0w+Na7Z7KCb6cIhSgWkkWV
fya7HKLxgScaQaoq7J+1jH7HxzbL+8EsR3h0kI81mYEuAMVQ8S36Z6irYIb6
82blWr3u7l6kH+prikGJLTneAyD2EeB4HrETyaKzymuiKqfJ5Tonq7qIVW/v
X+nHlSsfJxlGP/CWRnE45LGfi6KeAnS5iQXZq9I1Gz5CQhudhCpsQqUqVc9V
SKomsuYeEOIwyFY/tycJtcls0fitu1LDjqKxCSZzRKYmQSb8ZWRFphL85aKH
VsHyF1LavlRaQmmGVk/B+IeL1ieGlvqcKbiSd5aei4pVSWMhL1VVoZOUOnoQ
TGOop9iAisBrqASuEVXdWWCxMSOLev1crZPT03M+ImJOPOgBtQz1lJg9RcxO
wD6puARbQ9+QkUCDqa5XXnm+d9OmTREBVV2k9SEQ/oaMdtZlo49q7G4I/waY
ojnRF3s/+ujtUg4cNnYf6KEdcnBVLKLsnAMW6/OwUJ+7/Hjvj3/8m+aV28Jo
LawdFN7gMi7twaNCHnQ/NFFL62FO8PMZeVR7eNwN8m6DSWFDRqfq8jHCzGRl
pOQcbqvz+PFpUEybp9YyMxJb7wFG6zIy6mcYqfyoPKlXfWMrrkxSOgmMWsED
+oN6vIycv3cXVt1az2Cfxqg/MVIDS+lxAtQzGHLkYSSwixwlGYkc5WKkXa0p
UWu2O98BPAZBZga4py9CJ5Ef9MDvYQsea3JmxvaDFo8fHINaG+TJDKiHGUXV
ZzFSOdUMbEY0FyNGth+0ehjRBRuDwKlzMroISVntoaAGHwXPRWGIhwJdEtXi
KbMyuejBZnSwoccopWDNg1dlBN4XdD7CA3wf6KMZqskJPOFcowQFUT65KGhh
d3kGkVsBeBNEfCAI2wP8QSialTBD8cXeVvIoj8fSJdRNntjbdU+3vDMUHoLy
WXENFMaavcWEvRYVhZs9FGzpXh0FUT4rYez+joeCLd0JnhFiO0i30VNIsPch
3MeI+GEopBUZKdSDiKd4REx3TxkIhTTQLWKi8AgUEq18ZaUw3UNhK8xyB0AW
Gr0GOkYAF7FfDsOxE7h2n9keuJuh7gdAxBszuo+J+KMAfFke4AnpzvUYKN3L
rb8n4iBdohD+THXBmqR256RgS3e+Z9q9FqQbUrB3ja6OgshCNwxeWSks8owB
q0G6DWCgVPdkoIbCJaCw1ENBvVYrMwpuH5But8dAV4J0+0EhNWV0HyPix6CQ
luShoEW80iNiuitwPxBxk1vEHuAi9rmAJ0S82kNhCVDo64k9KIAoPA4UFsMU
IiuFdR4KC0HEfT1ZKKOgnX9ssOEJKJpFOYHb0t3oAU4/MVAP0m2CiQO5zxhB
AWNfsEbdbwOFOpDudZ4xYA5Itw+UT7PbfYjCk0CBDqVmpbDNY6AzQQF9oHya
QcRkoIbCZSikhXkoaPfZ7pk6028z1UHsW64KuIj9Qhh/fbG3pXuzx/mngHTr
PLFPcx8j4qeAwoKcFGwR3+IR8SQQcS2IuNktYqLwNJTP/GugcKuHwngQcQ3M
glpcItYGOk4AF7GfD4MXAa8F6e73AKefHq2B8skE/BkAPs8D3D54WBsJ9rDH
LLsAbjUIdpBbsMIsTak8C6UyNw/whGCPkFmaQ4YdINhqT8RtwdIPIkgKIvbX
QuE2yzat44XaNumX2is9WQAKwjYNheeAwhyYOPgo2II97rHNoSDYSsjCIKh7
D4XnoZDoLDeiUAPSvcsj3TbQQiXYJlEg2xwnKGAWCtao+62MFM54KAwCChVQ
SIPdciYKLwCF2Tkp2Fo456HQDFooegqpTAvaQMcHGz4N5TPrGoBf8FjpQHPh
jwVcP0zcWzPazziBXIR8Fgy2PuS2du/zLDk0GOSWdvXDhLsVpgke5C8C8pkZ
kVdDvfd4Jsr15iI0q971QyFoy+g0BvZLUCozrgH2wx6zrAPYpkyuEraI9gwY
ppyw9RThkkeQwcVblVFdm6poy2ghRomfAZzTPcNpwTr2VgVKfNyDuNKykGRY
QX4E92WohmnXAPeymQUDXH3Kk6oEta0EL4JapjftbBMEQBHPvABtf3gG4qke
KnbtrpK0Ab0SABIL61M9I7UNqBL087zZFgLyAkk40XgBSX00OuJyLZCeMzFS
07fFC6b1fufd5/T/dtJsOXigvQrpm+oZmAiaXV/PGkEraPee2df7dz/9V/qh
/i7VEQ0+5lfohKkYdK9BLqdcA7qnrVyqz5ZQlT5XwueYWeWDKfKbF6atgafM
tjC/CmCVgWkCmTaHFV5ilPFZyPVkz8hiw6yAMrRhmlyXTLo8mrSL6YH5OUj6
pGuA+aQFM0x6HUST1oJid5kowIlU5wKnh7knIXJ9ABKt7Zg6FGI2kfs8JHii
ZwymyJWPbRXa9kKYfSHBtHrsgfmF4C0xpk3wwLQPARHMS4kEl+yw0ADRpLXi
dJgimnlh2qr+FCR9AESTjkaR+RiYrwNMuqaTYBZBLo8mxjsll0aIJsEkVRvh
vAFJHwdjYFaYjyQ8UiW9ycBU42HyCGvB+pcOU0QzL0y7Nh+GpLdANOkcDvp5
VgPzix6YBWvE+WZGmA/CwDg4D0ztkZOCDW9CqsfmBGcLpweGwzYQDp0uSfqe
KGCKGLphVtsw9cNU44OQ4XYIXU50XwJ0Y2CgSUF3EQa/YRA7OlGbTMegewtS
TNfYB+gqk+j0IPgABG44BI4urTiUCk0Ezg2tPHBGFvcDuhEZ0ZFwjTa+DOhG
gVuH6KxDADa6eyGtnZBWuszLg+4rkNYuJ7qqMnQqHfdC4LogcE5o2komC0Ai
XFkBGQWYtTI5ixkNsaJL6UmgJlZfBWidOaGdh5nLWIgVXc1+yA3ta5DGkTCI
ETRTYGZpVKZxHIyvVwdNRC0vtLMwQ5kIUQtvxGLP98g4DLSve6AVrPHgY+Np
NrRSc2cTo5TK5SQPqjRJGgW8DbnsyIDKlNgZSOMUKH667V46KhGrHKhOwXRj
GsSK7nTnQfUOoKK7BiVRlQYj9bgL5hkzIFZ0e15dV9q5pgQbvgF5G54Biyny
k5C3mRAhJ5aE/CYLVCJCOVCdgGFntgeVXU0eVO8CqmFgpR8njosrEZ+AQM2F
pNGdu8kMDKT3IH1DPZBU4Nrb27WrH4cBZx5Eie7Vnw5JRCkrpNthoFkIUaKf
7TCQhOBMkb8PkIakQFKXeCoXvw0StwiilBPSB5C4dhhgCNJRGFiWQpSKroFF
G8BUAUTEJg2I2esJTjNIjCXdEBv6dSPSmYnNh+atgrWy1g6u/ZGB9Hvvvxbt
bx+GdC3zQIKi9kBS6KP1tKyQDkK6VprFUitdUeUcccP4CJJFNyYMYXzwmSd6
T5++UwM4AMlaZWBYkUnCEBI3MD6GBLV6YDx58Xzvjh3BiXD7IUFr9HP8m6im
YA+DfKYKBCIfrTBAEIK9MDqsMwjCQJhK9SD4JqRisAeB0kx4IHEPxGB9bgTf
giwMAlf70KpJc+E6IthoZKKKI0y47l7bxTTRqQh8Wqcq+OpbuyHwm+NOe0Sn
CQEYzt+GqLd4ulddKwjqW7uAs9V95NqkP9P9d4K3hGs3Z+z+FhhuN8fOFLE/
avqwdSe7F+ybwas/tGpOaVF9awcMrVb3apuGcJu7+5+H7pug+w/MrCzMvYFw
syf+dgAMAlHypvo+gfg3gfG8zwi2gxNvAQS3pyLAGJQhKCoDLr1hute93wA2
THk4rp608qYHPX8Xem70cA9rz3R+Q8bonwi6EdVvuH8Poj8wO4JtsDe1BeR/
ZyoCEYOBYLohglAABsFW2HNKxL5bdXCXG8EvAIIBgOA9szBgV2AoxesypiK8
F44tRQOjUhVGtQL3MSSlP1iSD9BmjzGbg/YaVHjHelsX021AamtVb/hXDJKO
UblBVovKUQ+z+LnRH7grYf7OuHHqH+XVmPyI6fKFhvyIN2RM9Vk34lFexFVq
W5V69xwUQj8PYlsbFuJ1KbVQMP6ku9P+NCPAOT/CGWBy4dwPke0Ho8i7iRmE
elWEQzFr0otC/zN3NxGiNiHenBH6ZoBOvzqQFfrqjFOCe9zQD6RD1+/Oh+ro
C979jWjcqgDAKzNOIsydI4RzTbfSEAOOy7lKAh7liXUZYGuq5Yr1ioxKvM8N
PdgaZUFbRFU6kwHApP4amCzLOIsxTISnGK0GNzoP37FZfS6dVFGzr9SLNm8d
vDl81HkoWV6DlLozTooecFMKbnZaFb4VPjTW9ySp4P4zFXpn6N5D+9SjoDlW
6j+DN1QWgtlb6blaJeRNUDWJZGnGSruonrSDzrSSoqNrEIq7sdCuj/6NnEoV
/VLba2dM6f3MAydt1CWYgRmovyojJk9nZLI444wt+EP6k0lLXcSpqN7Wfxkm
wotqYaRqUM8acKWXzj0gnJCOfW3SoozTv4fcdPp6qoxWBIhWV0ZaBzPSWpix
3h520+ovaQmbozWnGqA1LyOtLeAJRGt+xkmpuV+CMGxDq9FDixZgq4HWJi+t
KrVNT6rng6Yqgda8jHNYQ0tYnfGJFg8tOkZRDVOU/REtQ8FBa1RGWnMzTmU+
5abV6tEWHTKrAlrnMtLqH01zqoDMbM80x54DP+Ym066eYt8L7hUWyY6OfFfB
+Pmkl06lsXrbICg3szLOkPUV/3pAmhVsCH7Jt1LB7jFFFpk4nfJAFF6X+jHL
Akr8BjZpf0bGKY65Tl5YmklAh6ea6OyWSsD+jn6uiYrf3skzcCOoaVOXy26o
XR49m7O/ugvWeitBfTexe68eN29cpSFOzzhAmGuuhZMaiGM8EOlcxArPokwI
0RysnZJxkvG0G914Dzqz9CBWyYuA7gMTQJVXdaRAoVNVqu6YOjHjxMFcfyz8
wEhpkqccPws5pt+GDCDWlp3OpM4LUFBNQMdmTPezbrT6OE9i1hZcglFtp1k/
DMJwzdm+YCo4vbgyOiHWAOzKOLLrK0G1H80OYE33BDG4eKXKznMIrUDYqhhb
R8bh2VziKeRsgjfLU40vmfesVHtR1jDKYRlT/Gk3yrkelMHXKqNUmxGWANYl
ABrJtGVM8UtugAs8AM01wldCgOrntAhdX4MuoZCWjEk2F+EJyzHoFntKMbSB
MMnqFaFr4OQ2ZpxKGXRCv0YoS7VyXHuS9tpmIRhDjLdIfAMYX4NndmSPeK+4
8S2P8MX+EqAKBKwe4U8nKGloXG8DxEaGWJ9RH6+6Ia7yJDiYdlRGATx3/XT1
qOhdNKHVHMa20GvEXwLwzQC+VKk11oDom/zoy7m0Pc4JNqyVkIViwqlq6UlH
+KP715V6/ssv7yvqP6s0hxL86KEb18KqiH6bWf2uxeeByCDjqIpIQmqFCisV
vvlReDmV7QQmFRs8vMxNzjQnBbvEqORJEa8Km1fB/D5NOanPAKnAwqqTpRXW
FGXk824Omz0cwl29kIMC3j83h+cMh0Ihvlqq3VRYeM969fjhD75OB93NPEl4
ncG+1SOFhxN1VYJaaMmN/QnA3mawW5Muhb3Y+8Sl+0sfLf2pNykma2Eu9oab
z/W6tl37ZvbdX8NstOdm9DAwagVXqjCnfSg6JWL68e5XPr0GqsswEmZllL9d
P/OOWg9kqCM3n/uAzyAY5GvMGUWKT4mHtgL1f+l1YTlMAN50k9rhKbseSNLo
3KTOAimaG9SbJCkiYZJKhJbClEFfD6NNOZhgFXZJFkL44XK2nZqJMYtKYcq6
mss5nAAOzcChAQqt9PciKLS3khz2eDjcn8iEMuCp6rkiO4cjwKERiquROcyz
6qpghhOzPCGs2NTVfg8b+5bnBTNMzs7JZi+wGQgZaWE2s2VV6X9fdbM55FGJ
ubV+WFs6NwvS2OhRcAdwGADz0lZL7gq/LffpUFrhwpftyoaI1n5iTmj/IkUo
8+6IgG++tQ0I0MR1GEt7MsxQ3nZjv82ThHNxSUUiX51t5lVp15V6bABW/aC0
Ori0JkBGDCthwEb2xz1CsX+LJszMhqtktRJYhTN4exI8ilmNBVbvuFmd9LAK
Txyxc7X1ambJS+BoWh8rUeFMeCxT6oLy0yv72pXnBUROe4icTqRHKX977vFx
LrCog3KbkGBhXKADEmOuDhBOZhJzt4eP/ft8BePLu3LzmQZ87L2tghlnplqm
oLiYrAyFafP7bj73SD7CFE6arxUsZ96Xm8944FOdqDIFeQZXWStMm82J7sLk
DB89NiYM+kSizhT4I7l5dAKPKqiz2cyjBersIzePBzx5OR7XWWQAx3PzGQJ8
KmA+M5/5DIR5cnjCu21oxgce9OjmDsjPqdx8moFPEfKziH2gQc5odJ19083n
EQ+f8NxgOz/nc86Y+5kT4JJXVJthZhmLvw8UmT4ZXltycHqVWY1g6McSqVCS
vy/n1LLaHKQIodszmZVcTNUwOf5OEvcTHkkciUMeWe9DqbirItwKaziCr2WM
FTDlNSebC2M1BaIPpTn338OreAqWtV5y4S3Ja4PuvDqJKUz0d904gnVe3us+
CMK7rLEEmgsls8FE5KYb1uvVmVI7qi3Tq7Av0+vznlyFdwyx5UG9Bpe71Ipi
VsWh6t2q2fByB0DxoqfS7TM8Q+5PAgpa5KiMY2ozI7swtfuyB8leiAchWQnz
rVpG8pEbyWseJHsSMVEYngAkyyEm9YxEn8GiVRwcKjHLj1wZu+NIRCqm/rth
jtMg+w9rlKZyJhKva2hyqrDLfLxg6fJxQLAYZiVNAYJkfb7jRvCmJxa3JHKh
YkFIFkIuBnEuvu5G8mVPVewwrRVMfRo0jwGYeTApaGcwZrVAyNaA+ZoHzM0m
yCEY8yjquUEApoQt9v8EwDkwylsnkNgAzb1PhIZMDb+TFq1it0AZIi2atQAL
pXrcB0BnQVo7yoGqYqPVSQP0PQ/QXTHQKhtoCBZjeg6gTofBe1TccVIP4U22
CO+HEq8QxN4Yb4WNN5wRloO9C8BOhVF8HBeAdiptXQuDz30cIBCGEQ6hs2bN
urJy5UpNvqhbDpZ8rP1wPbTfDpgmQ64nMiZzFoaQsIndtz2xi29CXxnEvmBM
LoGyhErPUQ8Dygkw/ExllK+6UX4iUdLwI77WJ3fW9wL2cRDhGeXYVYDCm8Ta
vmSw/4IHezhw2NgHxtgrbezBBLQc+U5APgaGutkxjjJxveiG/30P/B3wtcF6
E8OnwN8I8LtgnFxQHnj1tzldQtiCEd4vSeSitG+Er42IA5+xaLYA9pFQNIsZ
O52lZLD/coDFsR+wFb44Jjf6dYB+OAzFyxi9PmlNu8OiAPMP4s+V7TNsCRCL
Qp8cI3ZUStmYtwIgD4XBeSVDphMVTcB/zVMsm+BrM2Pw2cfBJQC/HepljQQT
zkp154+7Ofxm+deij60Pvlau8FwlMw8IDIaBfGMQf7sMFIrwjAbA/kMP9tXB
10S5L/cUT0U0bs6w8IYrhi0wlgflWVYvdP69wfu7HrwrAO/aYFPBP4JONnhV
vEO8TVAg2xjvQ9CxEeePJF5R392Qli25a2MsYB8Ao791QN9G0ePG/uMAi5hB
LQbM29NqIoF4JCBugGiHuzIJOdIVWwbxTzzRDgpIFtWuqDrKkVOshwLyvoA8
2DUu27kMlrvV1iCMhT+UeEU1zwWaB3NXxyBAXAfVsY+rgy4TNbH+Yw/2WYD9
9tzYBwD2Goj2QcZ+zo39TzzYp8PXTsXYHXVSNmT2AfBVMD08wuDN1duiWg34
n3rATwHw52Pw2YfMKoBfhOnh7RJ+qNHTbvh/LuELjU6Er12M4TvrpibCHo44
dm0HR8bK1GhuCiGK1OjyL4I+hfONhY9f8mILtkX/7pKhCmGEx4cAxl95QjUa
vqY7reJuAvmpGCwJGv8b2bgoo86gcVFGuvEabvwYfN5w+HtPNyNc3dTJbsKq
otvomG7+l6ebocHXRFXpboJLL8sKg259arr5P56MtLoy0p+DRr+2aLr5Z50s
125Is6ujgdzRHvj8EisMxfhrZTsQja4UNXFfu1P6qvIEcICrrxbZV1gOt6T0
VSv7EjXRD4KvvxRksawm9Eqmls9S68P1nh7qXFkawpHbDuxtNg2evqpdfTlW
S29I6WugJ0sVriyN4L62QaTtvnQhJbyWmh9Z3rxKx3UpzcPquvps0Je+dF+9
pT86PGZdtlKzESJsV0Jb9HYxuh9AsTf6Sy/mRR05VvzXp/TRJfuohD5iMg3c
h94f0h/ttlqeAugrXC07BpjVUBc2+vkZ+/hHzvPKlOZXZmz+rz1JXpbSx5aM
ffwZRyhoSpaq3fxOVw1Vyub/iJtfBOVjJ/lg9C1/87/PzS9Iaf5OV/MJBfwW
Nz8vpfkLMjjO4v/VOL/2WKHzqZdi9UeXWS0/mjGrwapF2eLKTCgaG/izGZv/
FseFdkfs5l/L2Pw3uPmpUJN281/O2PyXuPnJKc1/AM1TTcJx8Cir46Fy7Px+
N0Lm7+MFzi/N++3mf8XVfKLun+AI6Xm8/tRyq9Efyrg4q/0hbrQLisbG/JOM
Wb2Hmx+Z0vyfZmz+pGw+zCrtFtjN/3XG5o/GCbVtnnYH7Ob/KWPzezg4bVAv
dmrjHZwMde9YtBucpY8mV2HqPuJ9Ch1jPe3axL21ZOltePTVoOWwgULRJYjE
wYIw+8F8UP21ItnHeBk1pyoWc+Jp/6KMx6yM2Z/FsWrI0sfSjH04DisHu62y
gMv6WJ+xj07uo0+WPm7M2EcbZ7oG6qos53uhD1LKQM55ZZY+bovgZVWK40wu
vSddjKerVh9noy9k0EdwcXV1cigK/y9rvEcGScPWtypNXKZdlkF9hbRmtCr5
1u/8bMPPNvxsw882/GzD/wMbCj/3fwHEwPLD\
\>", "ImageResolution" -> \
144.],ExpressionUUID->"36cc2567-0b81-481d-b40a-8713a3328dc4"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Net", "Section",ExpressionUUID->"1dc60f21-6afa-4681-8107-f8d76a37175b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[77]:=",ExpressionUUID->"05ef11ec-fc4c-4f36-befa-2816fb10225b"],
Cell[BoxData[
GraphicsBox[
{RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[1, 2], 3}, {
1, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[3, 2], 3}, {
2, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[5, 2], 3}, {
3, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
3, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
3, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
4 + Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 2] (11 + 3^Rational[1, 2])}, {Rational[7, 2], 1}, {
Rational[7, 2], 2}, {Rational[7, 2], 3}, {Rational[7, 2], 4}, {
Rational[1, 2] (9 - 3^Rational[1, 2]), Rational[5, 2]}, {
4, 1 + Rational[-1, 2] 3^Rational[1, 2]}, {
4, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
4, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
4, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
4, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[9, 2], 0}, {
Rational[9, 2], 1}, {Rational[9, 2], 2}, {Rational[9, 2], 3}, {
5, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
5, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
5, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
5, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[11, 2], 0}, {
Rational[11, 2], 1}, {Rational[11, 2], 2}, {Rational[11, 2], 3}, {
Rational[11, 2], 5 + 3^Rational[1, 2]}, {
5 + Rational[1, 2] 3^Rational[1, 2],
Rational[1, 2] (7 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (4 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
6, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2] (11 + 3^Rational[1, 2]), Rational[1, 2]}, {
Rational[13, 2], 1}, {Rational[13, 2], 2}, {Rational[13, 2], 3}, {
7, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[15, 2], 3}, {
8, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[17, 2], 3}}, {{
0, 3.8660254037844384`}, {0.5, 3}, {1, 3.8660254037844384`}, {1.5, 3}, {
2, 3.8660254037844384`}, {2.5, 3}, {3, 3.8660254037844384`}, {
3, 4.866025403784438}, {3, 5.866025403784438}, {3.1339745962155616`,
6.366025403784438}, {3.5, 1}, {3.5, 2}, {3.5, 3}, {3.5, 4}, {
3.6339745962155616`, 2.5}, {4, 0.1339745962155614}, {
4, 3.8660254037844384`}, {4, 4.866025403784438}, {
4, 5.866025403784438}, {4, 6.866025403784438}, {4.5, 0}, {4.5, 1}, {
4.5, 2}, {4.5, 3}, {5, 3.8660254037844384`}, {5, 4.866025403784438}, {
5, 5.866025403784438}, {5, 6.866025403784438}, {5.5, 0}, {5.5, 1}, {
5.5, 2}, {5.5, 3}, {5.5, 6.732050807568877}, {5.866025403784438,
4.366025403784438}, {6, 2.8660254037844384`}, {
6, 3.8660254037844384`}, {6, 4.866025403784438}, {
6, 5.866025403784438}, {6.366025403784438, 0.5}, {6.5, 1}, {6.5, 2}, {
6.5, 3}, {7, 3.8660254037844384`}, {7.5, 3}, {8, 3.8660254037844384`}, {
8.5, 3}}],
PolygonBox[{{18, 26, 27, 19}, {26, 18, 17, 25}, {26, 25, 34}, {27, 26, 37,
38}, {27, 38, 33}, {19, 27, 28, 20}, {19, 20, 10}, {18, 19, 9, 8}, {18,
8, 14}, {31, 23, 22, 30}, {23, 31, 32, 24}, {23, 24, 15}, {22, 23, 12,
11}, {22, 11, 16}, {30, 22, 21, 29}, {30, 29, 39}, {31, 30, 40, 41}, {
31, 41, 35}, {1, 2, 3}, {3, 2, 4}, {3, 4, 5}, {5, 4, 6}, {5, 6, 7}, {7,
6, 13}, {7, 13, 17}, {17, 13, 24}, {17, 24, 25}, {25, 24, 32}, {25, 32,
36}, {36, 32, 42}, {36, 42, 43}, {43, 42, 44}, {43, 44, 45}, {45, 44,
46}}]]}]], "Output",
CellLabel->"Out[77]=",ExpressionUUID->"abb24f3d-ad21-442b-b0c8-9200e9103072"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->"In[78]:=",ExpressionUUID->"aa765a36-5044-471a-a4ca-40ff833c3213"],
Cell[BoxData[
GraphicsBox[
{EdgeForm[GrayLevel[0]],
GraphicsComplexBox[
NCache[{{0, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[1, 2], 3}, {
1, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[3, 2], 3}, {
2, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[5, 2], 3}, {
3, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
3, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
3, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
4 + Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 2] (11 + 3^Rational[1, 2])}, {Rational[7, 2], 1}, {
Rational[7, 2], 2}, {Rational[7, 2], 3}, {Rational[7, 2], 4}, {
Rational[1, 2] (9 - 3^Rational[1, 2]), Rational[5, 2]}, {
4, 1 + Rational[-1, 2] 3^Rational[1, 2]}, {
4, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
4, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
4, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
4, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[9, 2], 0}, {
Rational[9, 2], 1}, {Rational[9, 2], 2}, {Rational[9, 2], 3}, {
5, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
5, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
5, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
5, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[11, 2], 0}, {
Rational[11, 2], 1}, {Rational[11, 2], 2}, {Rational[11, 2], 3}, {
Rational[11, 2], 5 + 3^Rational[1, 2]}, {
5 + Rational[1, 2] 3^Rational[1, 2],
Rational[1, 2] (7 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (4 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (6 + 3^Rational[1, 2])}, {
6, Rational[1, 2] (8 + 3^Rational[1, 2])}, {
6, 5 + Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2] (11 + 3^Rational[1, 2]), Rational[1, 2]}, {
Rational[13, 2], 1}, {Rational[13, 2], 2}, {Rational[13, 2], 3}, {
7, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[15, 2], 3}, {
8, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[17, 2], 3}}, {{
0, 3.8660254037844384`}, {0.5, 3}, {1, 3.8660254037844384`}, {1.5, 3}, {
2, 3.8660254037844384`}, {2.5, 3}, {3, 3.8660254037844384`}, {
3, 4.866025403784438}, {3, 5.866025403784438}, {3.1339745962155616`,
6.366025403784438}, {3.5, 1}, {3.5, 2}, {3.5, 3}, {3.5, 4}, {
3.6339745962155616`, 2.5}, {4, 0.1339745962155614}, {
4, 3.8660254037844384`}, {4, 4.866025403784438}, {
4, 5.866025403784438}, {4, 6.866025403784438}, {4.5, 0}, {4.5, 1}, {
4.5, 2}, {4.5, 3}, {5, 3.8660254037844384`}, {5, 4.866025403784438}, {
5, 5.866025403784438}, {5, 6.866025403784438}, {5.5, 0}, {5.5, 1}, {
5.5, 2}, {5.5, 3}, {5.5, 6.732050807568877}, {5.866025403784438,
4.366025403784438}, {6, 2.8660254037844384`}, {
6, 3.8660254037844384`}, {6, 4.866025403784438}, {
6, 5.866025403784438}, {6.366025403784438, 0.5}, {6.5, 1}, {6.5, 2}, {
6.5, 3}, {7, 3.8660254037844384`}, {7.5, 3}, {8, 3.8660254037844384`}, {
8.5, 3}}], {
{RGBColor[1, 0, 0],
PolygonBox[{{1, 2, 3}, {3, 2, 4}, {3, 4, 5}, {5, 4, 6}, {5, 6, 7}, {7,
6, 13}, {7, 13, 17}, {17, 13, 24}, {17, 24, 25}, {18, 8, 14}, {19, 20,
10}, {22, 11, 16}, {23, 24, 15}, {25, 24, 32}, {25, 32, 36}, {26, 25,
34}, {27, 38, 33}, {30, 29, 39}, {31, 41, 35}, {36, 32, 42}, {36, 42,
43}, {43, 42, 44}, {43, 44, 45}, {45, 44, 46}}]},
{RGBColor[1, 0.5, 0],
PolygonBox[{{18, 19, 9, 8}, {18, 26, 27, 19}, {19, 27, 28, 20}, {22, 23,
12, 11}, {23, 31, 32, 24}, {26, 18, 17, 25}, {27, 26, 37, 38}, {30,
22, 21, 29}, {31, 23, 22, 30}, {31, 30, 40, 41}}]}}]}]], "Output",
CellLabel->"Out[78]=",ExpressionUUID->"74d69a86-a0fc-461f-97c1-c463aa3ebd6e"]
}, Open ]],
Cell[BoxData[
RowBox[{"NetPrintout", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
"\"\\"", ",", "\"\\""}], "]"}],
",", "\"\\""}], "]"}]], "Input",ExpressionUUI\
D->"83d44b12-9bb3-4b70-9c72-2085a9444744"]
}, Closed]],
Cell[CellGroupData[{
Cell["Properties", "Section",ExpressionUUID->"9b411472-7b76-40a8-a78e-f7168fc07679"],
Cell[CellGroupData[{
Cell["Initialization", "Subsubsection",ExpressionUUID->"ddd7fc29-4d9b-4c37-8194-5badf2f115af"],
Cell[BoxData[
RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[4]:=",ExpressionUUID->"0fa9fcb6-0efc-420a-aecc-2b41b8070016"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"pname", "=", "\"\\""}], ",",
"\"\\""}], "]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[5]:=",ExpressionUUID->"90903ef4-62ea-4c29-a716-ba9e9d565ab2"],
Cell[BoxData[
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17,
15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18,
3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7,
10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {
12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {
21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {
5, 22, 21}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}], {{9, 15, 11}, {
17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3,
12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19,
21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20,
14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10,
12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10,
7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {
17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6,
9, 20}, {2, 19, 17}, {5, 22, 21}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}], {{9, 15, 11}, {
17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3,
12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19,
21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20,
14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10,
12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10,
7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {
17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6,
9, 20}, {2, 19, 17}, {5, 22, 21}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {
17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18,
20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14,
11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16,
22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}],
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[5]=",ExpressionUUID->"cb713d8a-1cf4-4b5d-aade-afb5d0d003b5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vol", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[6]:=",ExpressionUUID->"8eed6608-7173-4f20-a1cb-ee12f29af13a"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"8.15\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
8.15357483362127410941866401117295026779`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 8.153574833621274},
"NumericalApproximation"],
Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 +
594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[6]=",ExpressionUUID->"97374caa-daec-40b0-abe5-6d21fde01595"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Centroid", "Subsection",ExpressionUUID->"461cee03-1522-4810-a1ac-0e6479e2550a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"AbsolutePointSize", "[", "10", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Point", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "}"}],
",",
RowBox[{"Opacity", "[", ".2", "]"}], ",",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}],
"]"}]], "Input",
CellLabel->"In[81]:=",ExpressionUUID->"28b9483a-e3dc-486e-85e9-bf1daafbbf79"],
Cell[BoxData[
Graphics3DBox[
{AbsolutePointSize[10], Point3DBox[{0, 0, 0}],
{RGBColor[0, 0, 1], Point3DBox[{0, 0, 0}]},
{Opacity[0.2],
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, 2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {
1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, {-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883,
1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22,
12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19,
4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20,
14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {
14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2,
5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22,
21}}]]}}]], "Output",
CellLabel->"Out[81]=",ExpressionUUID->"16f21f9b-8a9f-43f3-8e32-501abb2695c2"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[82]:=",ExpressionUUID->"97629861-28c2-4203-af68-5b9bc263a9d7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output",
CellLabel->"Out[82]=",ExpressionUUID->"2990f2a5-09aa-4b47-bce9-5c97faf44737"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Timing"}]], "Input",
CellLabel->"In[84]:=",ExpressionUUID->"28900788-41c5-44cd-b444-cf0b479d7898"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"15.862463`", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[84]=",ExpressionUUID->"96e1f0a5-444f-4e64-ba04-8e4f30229c93"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Timing"}]], "Input",
CellLabel->"In[85]:=",ExpressionUUID->"1e802fe8-6820-422a-b5b9-8b2eebe9c1ad"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"65.017329`", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[85]=",ExpressionUUID->"735b78b0-32b6-4e49-b6cf-5a79084a5df4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Circumsphere", "Subsection",ExpressionUUID->"a7436b9d-7607-4cf6-9986-6151c8440e8f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[86]:=",ExpressionUUID->"010b98df-0bb5-4eff-9771-65a50fc2a347"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->"Out[86]=",ExpressionUUID->"fcfe9a61-9dd2-4e7d-9897-5b16ef0b8b8a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Circumsphere", "[", "p", "]"}]], "Input",
CellLabel->"In[87]:=",ExpressionUUID->"62f11410-a72a-4518-bde9-fca0d19f01ac"],
Cell[BoxData[
TemplateBox[{
"Circumsphere", "indep",
"\"Circumsphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\
\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \
RowBox[{\\\"0\\\", \\\",\\\", RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \
SqrtBox[\\\"2\\\"]]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \
RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\
\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \
\\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", FractionBox[\\\"1\
\\\", SqrtBox[\\\"2\\\"]], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \
RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\
\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \
\\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \
RowBox[{\\\"-\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \
FractionBox[\\\"1\\\", SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"6\\\", \\\"\[RightSkeleton]\\\
\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \
SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", FractionBox[\\\"1\\\", \
SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \\\"0\\\", \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"14\\\", \
\\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"}\
\\\"}]}], \\\"]\\\"}]\\).\"", 2, 87, 1, 19518076696055196288, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[87]:=",ExpressionUUID->"5da21f9b-5cf0-4f9a-9ee9-ad10f72e8e18"],
Cell[BoxData[
RowBox[{"Circumsphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17,
15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18,
3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7,
10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {
12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6,
2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19,
17}, {5, 22, 21}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867,
0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11,
14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22,
10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9,
11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12,
3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9,
6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9,
20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]},
ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867,
0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11,
14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22,
10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9,
11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12,
3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9,
6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9,
20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]},
ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {
17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18,
20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {
8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {
14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2,
5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->"Out[87]=",ExpressionUUID->"5ddcae32-484e-4e6c-9cb7-20fbea33da6f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"sphere", "=",
RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->"In[88]:=",ExpressionUUID->"fb80f845-33fc-4f3f-9bf2-a0191b9ee7b0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.246737`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->"Out[88]=",ExpressionUUID->"d8c536fa-f2c0-4824-a9a6-abffa088aa29"]
}, Open ]],
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}],
"}"}], ",", "p"}], "}"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",
CellLabel->
"In[275]:=",ExpressionUUID->"f19f4681-eb11-4dfd-9dd3-4e3eba746714"]
}, Closed]],
Cell[CellGroupData[{
Cell["Convex", "Subsection",ExpressionUUID->"347d361f-31de-4d09-ba22-a33c4588c88d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input",
CellLabel->"In[89]:=",ExpressionUUID->"368c0d72-0970-4c98-8ae5-82199e94dbbd"],
Cell[BoxData["True"], "Output",
CellLabel->"Out[89]=",ExpressionUUID->"48068cbc-aed9-42ce-b85f-899d2356ea27"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["DihedralAngles", "Subsection",ExpressionUUID->"ccacc236-b65c-4e36-8255-0671356d087e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "//",
"Tally"}]], "Input",
CellLabel->"In[90]:=",ExpressionUUID->"f6836771-30ad-4e68-95a4-1779abe887ef"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}]}], ")"}]}], "]"}], ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox["1",
SqrtBox[
FractionBox["6",
RowBox[{"3", "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "70"}], "-",
RowBox[{"50", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"9908", "+",
RowBox[{"7006", " ",
SqrtBox["2"]}]}]]}], ")"}]}]]}]}]]]]}], "]"}], ",", "8"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.877\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.87739856415969097458429359903675504029`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"17", "+",
RowBox[{"216", " ", "#1"}], "+",
RowBox[{"196", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"744", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"602", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"744", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"324", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"216", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"81", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.877398564159691},
"NumericalApproximation"],
Root[
17 + 216 # + 196 #^2 - 744 #^3 - 602 #^4 + 744 #^5 + 324 #^6 - 216 #^7 +
81 #^8& , 2, 0]], "]"}], ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "4"], ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"ArcCos", "[",
RowBox[{"-",
SqrtBox[
FractionBox["2", "3"]]}], "]"}], ",", "16"}], "}"}]}],
"}"}]], "Output",
CellLabel->"Out[90]=",ExpressionUUID->"e6f50e28-fb81-46bc-a462-9b9a34b5a50b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Tally"}]], "Input",
CellLabel->"In[91]:=",ExpressionUUID->"664a95f2-e83b-48d3-a4f3-87a45a5ac2cd"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->"Out[91]=",ExpressionUUID->"c9af5b26-078c-4ad3-a11d-350dcffd8d19"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["EdgeLengths", "Subsection",ExpressionUUID->"d7082a99-407b-49aa-b4c6-4dff82912c71"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[92]:=",ExpressionUUID->"2c2e4261-9f46-4ada-bbe1-96e5702e9dce"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->"Out[92]=",ExpressionUUID->"36ae2e6f-6efd-4dfe-9e83-a98d46092d32"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "/.",
RowBox[{
RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]",
RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//",
"Union"}], "//", "Quiet"}]], "Input",
CellLabel->"In[93]:=",ExpressionUUID->"66712797-64c5-4ca5-b5e6-da908e51cc56"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",
CellLabel->"Out[93]=",ExpressionUUID->"972cfda9-1ae9-47fd-bf37-d00bef2df8c6"]
}, Open ]]
}, Closed]],
Cell["Faces", "Subsection",ExpressionUUID->"940321c0-d329-4895-b0f3-bacf14d64abd"],
Cell[CellGroupData[{
Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"ad514590-121e-490c-9b0b-06d3c3c69a90"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[94]:=",ExpressionUUID->"88582903-ac25-4e6e-a578-2a95ffc978df"],
Cell[BoxData[
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]]], "Output",
CellLabel->"Out[94]=",ExpressionUUID->"164e2099-ef7f-46ed-8cbb-8b359a7f001e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//",
"Quiet"}]], "Input",
CellLabel->"In[95]:=",ExpressionUUID->"09f00f63-7fe6-4f84-8bdb-922bebe7e0c8"],
Cell[BoxData[
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]]], "Output",
CellLabel->"Out[95]=",ExpressionUUID->"dc986d5b-8e31-4cb5-9399-a20d4fc1b357"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["InertiaTensor", "Subsection",ExpressionUUID->"46e9b3c3-8bb3-4f31-a2eb-5658dd8a4c89"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[96]:=",ExpressionUUID->"32b5449c-267d-47dc-8eb0-efb42f174ed1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.613\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.61257733346343501423802990757394582033`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "23342222273"}], "-",
RowBox[{"180903240960", " ", "#1"}], "+",
RowBox[{"4742529728000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"28741649408000", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"7169884160000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"55083008000000", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"68124672000000", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"26214400000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"13107200000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.612577333463435},
"NumericalApproximation"],
Root[-23342222273 - 180903240960 # + 4742529728000 #^2 +
28741649408000 #^3 - 7169884160000 #^4 - 55083008000000 #^5 -
68124672000000 #^6 + 26214400000000 #^7 + 13107200000000 #^8& , 5, 0]],
",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.613\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.61257733346343501423802990757394582033`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "23342222273"}], "-",
RowBox[{"180903240960", " ", "#1"}], "+",
RowBox[{"4742529728000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"28741649408000", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"7169884160000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"55083008000000", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"68124672000000", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"26214400000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"13107200000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.612577333463435},
"NumericalApproximation"],
Root[-23342222273 - 180903240960 # + 4742529728000 #^2 +
28741649408000 #^3 - 7169884160000 #^4 - 55083008000000 #^5 -
68124672000000 #^6 + 26214400000000 #^7 + 13107200000000 #^8& , 5, 0]],
",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.658\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.65787343954424948311299203851376660168`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"2145089", "-",
RowBox[{"110505920", " ", "#1"}], "+",
RowBox[{"2245288000", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"22815904000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"122232480000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"341824000000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"484736000000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"307200000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"54400000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.6578734395442495},
"NumericalApproximation"],
Root[
2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 +
122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 -
307200000000 #^7 + 54400000000 #^8& , 5, 0]]}], "}"}]}],
"}"}]], "Output",
CellLabel->"Out[96]=",ExpressionUUID->"632575fc-7063-4e4a-8d2e-26a7ad7683dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{"MomentOfInertia", "[",
RowBox[{"p", ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}],
RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->"In[97]:=",ExpressionUUID->"26da62fd-ba04-4030-963b-33c964101e8b"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->"Out[97]=",ExpressionUUID->"fa6e7333-d9af-4b5b-9530-9d23b6a6a558"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//",
"Timing"}]], "Input",
CellLabel->"In[98]:=",ExpressionUUID->"7a123ed0-379c-43a3-adaa-9f6c3ae17a2f"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->"Out[98]=",ExpressionUUID->"0227c32a-6615-4ca0-a9dd-7f05918017f2"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Insphere", "Subsection",ExpressionUUID->"55152c01-243a-4fce-865a-751417b3ca79"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[99]:=",ExpressionUUID->"b80d0586-ea9d-4794-af9d-9a39a7324e1f"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->"Out[99]=",ExpressionUUID->"5867cb8c-ebd1-45b8-9741-4d5a1895cb3b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Insphere", "[", "p", "]"}]], "Input",
CellLabel->
"In[100]:=",ExpressionUUID->"180f9203-318e-4dcc-8bdd-c05cd1afbb7f"],
Cell[BoxData[
TemplateBox[{
"Insphere", "indep",
"\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \
\\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \
RowBox[{\\\"0\\\", \\\",\\\", RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \
SqrtBox[\\\"2\\\"]]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \
RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\
\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \
\\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", FractionBox[\\\"1\
\\\", SqrtBox[\\\"2\\\"]], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \
RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \
RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\
\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \
\\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\
\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \
\\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \
RowBox[{\\\"-\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \
FractionBox[\\\"1\\\", SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"6\\\", \\\"\[RightSkeleton]\\\
\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \
SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", FractionBox[\\\"1\\\", \
SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \\\"0\\\", \\\",\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \
SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \
\\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"14\\\", \
\\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"}\
\\\"}]}], \\\"]\\\"}]\\).\"", 2, 100, 2, 19518076696055196288, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[100]:=",ExpressionUUID->"72819d0e-28a5-417d-be56-387cab3221ab"],
Cell[BoxData[
RowBox[{"Insphere", "[",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17,
15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18,
3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7,
10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {
12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6,
2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19,
17}, {5, 22, 21}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867,
0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11,
14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22,
10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9,
11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12,
3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9,
6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9,
20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]},
ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance -> None,
BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
TagBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 -
512 #^6 + 512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2],
0, Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^
Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 -
512 #^6 + 512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`,
0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985,
1.1372545661180333`}, {1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, \
-0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867,
0.9238795325112867, 0.4301477849314858}, {
0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867,
0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985,
0.6532814824381883, 1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11,
14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22,
10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9,
11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8,
23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12,
3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9,
6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9,
20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]},
ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["24", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["34", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{0, -2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2],
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0,
Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10,
13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {
17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18,
20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {
8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {
14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2,
5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}],
Editable->False,
SelectWithContents->True,
Selectable->False], "]"}]], "Output",
CellLabel->
"Out[100]=",ExpressionUUID->"d5c0aba9-200c-4baa-8c2b-40583fd2e0ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"MyInsphere", "[", "p", "]"}]}]], "Input",
CellLabel->
"In[101]:=",ExpressionUUID->"b2e624ef-92ab-495e-956b-fcbaa1078723"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[101]=",ExpressionUUID->"c416270e-a452-480b-8fce-1283f492c183"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanCylindricalRadius", "Subsection",
FontColor->RGBColor[
1, 0, 0],ExpressionUUID->"a322f0f4-a333-42f0-b34a-293ced2d3a19"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (3)) \
In[9]:=",ExpressionUUID->"da471ebf-d216-4722-8f74-7c051523ea63"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output",
CellLabel->
"(V14.0.0-Devel (3)) \
Out[9]=",ExpressionUUID->"b1ab2dec-0b69-441e-9e31-ae1338eec582"]
}, Open ]],
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",ExpressionUUID->"a0c4e92c-3a30-4944-934d-c87591878765"],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",
CellLabel->
"(V14.0.0-Devel (3)) \
In[26]:=",ExpressionUUID->"61ee1fc1-4709-4600-8baa-879a22765491"],
Cell[BoxData[
TemplateBox[{
"NIntegrate", "slwcon",
"\"Numerical integration converging too slowly; suspect one of the \
following: singularity, value of the integration is 0, highly oscillatory \
integrand, or WorkingPrecision too small.\"", 2, 26, 3, 21671101025154828720,
"V14.0.0-Devel (3)"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[26]:=",ExpressionUUID->"4f2fa515-3c66-4019-9a38-bf2257259d7f"],
Cell[BoxData["0.7551190630644945`"], "Output",
CellLabel->
"(V14.0.0-Devel (3)) \
Out[26]=",ExpressionUUID->"cf005891-bb0c-48c0-89ec-84bfa3247a2b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ClosestMeanCylindricalRadius", "[", "%", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (3)) \
In[27]:=",ExpressionUUID->"91d75801-316a-4556-aadf-7918dafa2b07"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"agrees to within: \"\>", "\[InvisibleSpace]",
"0.0007335474641612105`"}],
SequenceForm["agrees to within: ", 0.0007335474641612105],
Editable->False]], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[27]:=",ExpressionUUID->"2fe7f33a-8b10-4708-bcb5-3a1f69d8eec4"],
Cell[BoxData["$Failed"], "Output",
CellLabel->
"(V14.0.0-Devel (3)) \
Out[27]=",ExpressionUUID->"feafd3a3-3e41-4955-960c-0a9d6c10a6c8"]
}, Open ]],
Cell[CellGroupData[{
Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"13cc068b-c00c-4a41-8299-44b6652a2a78"],
Cell[BoxData[
RowBox[{"(",
RowBox[{"rxy", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input",ExpressionUUID->\
"d8a18726-eabe-4f9b-a2e8-bf77dc161d6b"],
Cell[BoxData[
RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"4bd0adaf-eff3-4c8b-b90f-ec3a8d0d037c"]
}, Open ]],
Cell[CellGroupData[{
Cell["Divergence theorem [unevaluated integral]", "Subsubsection",
FontColor->RGBColor[
1, 0, 0],ExpressionUUID->"e4bb7f00-b936-4c00-a965-e7fe64e69941"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxy", "=",
RowBox[{"MeanCylindricalRadius", "[",
RowBox[{"p", ",",
RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",",
RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"3de79123-5aca-4f8c-a446-f6ff676b9c05"],
Cell[CellGroupData[{
Cell[BoxData[
TemplateBox[{
"\"\\nIntegrateOverPolygon on polygon \"", "1", "\"/\"", "34", "\" (\"",
"3", "\" sides)\""},
"Row",
BaseStyle->RGBColor[0, 0, 1],
DisplayFunction->(RowBox[{
TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ),
InterpretationFunction->(RowBox[{"Row", "[",
RowBox[{
RowBox[{"{",
TemplateSlotSequence[1, ","], "}"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"RGBColor", "[",
RowBox[{"0", ",", "0", ",", "1"}], "]"}]}]}], "]"}]& )]], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"606a03c7-4c80-491e-9dc5-49f6249c6854"],
Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"38bc660b-d328-478a-85d3-94e644f64436"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"aba4e28e-c5c0-4e98-a765-6babfda4cd2c"],
Cell[BoxData["\<\" Polygon:\"\>"], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"e442316d-272a-48d0-903b-6ade44d7d4d4"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
SqrtBox["2"]]}], ",",
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"5", "+",
FractionBox["7",
SqrtBox["2"]]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], "2"], ",",
FractionBox[
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"5", "+",
FractionBox["7",
SqrtBox["2"]]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["2"]]}]], ",", "0", ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"5", "+",
FractionBox["7",
SqrtBox["2"]]}]]}]]}]}], "}"}]}], "}"}]], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"ae357bab-a6f7-4c44-a33e-d83472ff6a0d"],
Cell[BoxData["\<\" 1 integral(s):\"\>"], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"43cb2ae9-a73d-4efe-8594-330cc58880b7"],
Cell[BoxData[
RowBox[{"{",
TemplateBox[{
RowBox[{
FractionBox["1", "16"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "-",
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"58", "+",
RowBox[{"41", " ",
SqrtBox["2"]}]}]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], "2"]}]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[", "2", "]"}], "-",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+", "\[FormalS]", "+",
RowBox[{
SqrtBox["2"], " ", "\[FormalS]"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]",
"+",
RowBox[{
SqrtBox["2"], " ", "\[FormalT]"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "\[FormalT]"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], "2"]}]]}], "]"}]}], ")"}]}]}], ")"}]}],
"\[FormalT]", "0", "1", "\[FormalS]", "0",
RowBox[{"1", "-", "\[FormalT]"}]},
"InactiveIntegrate",
DisplayFunction->(RowBox[{
SubsuperscriptBox[
StyleBox["\[Integral]", "Inactive"], #3, #4],
RowBox[{
SubsuperscriptBox[
StyleBox["\[Integral]", "Inactive"], #6, #7],
RowBox[{#,
RowBox[{
StyleBox["\[DifferentialD]", "Inactive"], #5}],
RowBox[{
StyleBox["\[DifferentialD]", "Inactive"], #2}]}]}]}]& ),
InterpretationFunction->(RowBox[{
RowBox[{"Inactive", "[", "Integrate", "]"}], "[",
RowBox[{#, ",",
RowBox[{"{",
RowBox[{#2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"{",
RowBox[{#5, ",", #6, ",", #7}], "}"}]}], "]"}]& )], "}"}]], "Print",\
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"4853770c-b2fc-4c6e-ad7b-ee78b4e5fb94"],
Cell[BoxData["\<\" integrals over t and s:\"\>"], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"6be283a5-62ab-4221-9a43-5ab73603000c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["1", "16"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "-",
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"58", "+",
RowBox[{"41", " ",
SqrtBox["2"]}]}]]}]], " ",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "1"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"1", "-", "\[FormalT]"}]],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], " ",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], "2"]}]]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[", "2", "]"}], "-",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+", "\[FormalS]", "+",
RowBox[{
SqrtBox["2"], " ", "\[FormalS]"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]", "+",
RowBox[{
SqrtBox["2"], " ", "\[FormalT]"}], "-",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "\[FormalT]"}], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[FormalS]", "-",
RowBox[{
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}],
")"}], "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}],
")"}], "2"]}]]}], "]"}]}], ")"}]}]}], ")"}],
RowBox[{"\[DifferentialD]", "\[FormalS]"}],
RowBox[{"\[DifferentialD]", "\[FormalT]"}]}]}]}]}], "}"}]], "Print",
CellLabel->
"During evaluation of (V14.0.0-Devel (3)) \
In[28]:=",ExpressionUUID->"a74a853a-8da7-42d4-b026-cbf6a049f038"]
}, Open ]],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"(V14.0.0-Devel (3)) \
Out[28]=",ExpressionUUID->"1e253cad-0975-46b8-a8a2-b830bb987537"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "rxy", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (3)) \
In[29]:=",ExpressionUUID->"b88f8665-e10c-47ef-8f90-389e325030cd"],
Cell[BoxData["rxy"], "Output",
CellLabel->
"(V14.0.0-Devel (3)) \
Out[29]=",ExpressionUUID->"0d7542cb-3492-462b-a9d7-be31ad4380a9"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"LogSimplify", "[", "rxy", "]"}], "//", "FullSimplify"}]], "Input",E\
xpressionUUID->"125e8db2-2141-4c7d-a991-446fe907dd1f"]
}, Closed]],
Cell[CellGroupData[{
Cell["CAD", "Subsubsection",ExpressionUUID->"c0dd0f8c-d09d-41f7-a379-b204f1693ad8"],
Cell["90+ GB", "Text",ExpressionUUID->"a9392263-2106-40f6-b238-ef663f6849f2"],
Cell[BoxData[
RowBox[{"cad", "=",
RowBox[{"CylindricalDecomposition", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (2)) \
In[4]:=",ExpressionUUID->"b72aa733-111e-4d1c-9b26-435a4af3363d"],
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]], "Input",Expres\
sionUUID->"3775b55e-e447-4ad8-a3f8-549ccfec6eda"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxy", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"8c6b46c1-7659-405b-8ee6-\
2f128e976a13"]
}, Open ]],
Cell[CellGroupData[{
Cell["CAD over 1/8", "Subsubsection",ExpressionUUID->"8849a97d-698f-4368-9c56-ad3c247e46eb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"reg", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&",
RowBox[{"0", "<", "y", "<", "x"}], "&&",
RowBox[{"z", ">", "0"}]}], "]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[4]:=",ExpressionUUID->"63332d69-1032-4731-ab1e-685f35222a6d"],
Cell[BoxData[
RowBox[{
RowBox[{"z", ">", "0"}], "&&",
RowBox[{"y", ">", "0"}], "&&",
RowBox[{
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "-",
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"58", "+",
RowBox[{"41", " ",
SqrtBox["2"]}]}]]}]], " ", "x"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}], "+",
RowBox[{"y", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.658\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.65844172304728565414677632361417636275`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"8", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["#1", "4"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], 0.6584417230472857},
"NumericalApproximation"],
Root[-2 + 8 #^2 - 8 #^4 + #^8& , 4, 0]]}]}], ")"}]}], "\[LessEqual]",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"12", " ",
SqrtBox["2"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]}]]}], "&&",
RowBox[{
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "-",
RowBox[{"3", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"58", "+",
RowBox[{"41", " ",
SqrtBox["2"]}]}]]}]], " ", "y"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}], "+",
RowBox[{"x", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.658\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.65844172304728565414677632361417636275`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"8", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["#1", "4"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], 0.6584417230472857},
"NumericalApproximation"],
Root[-2 + 8 #^2 - 8 #^4 + #^8& , 4, 0]]}]}], ")"}]}], "\[LessEqual]",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"12", " ",
SqrtBox["2"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]], " ",
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"12", " ",
SqrtBox["2"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}], ")"}]}]], " ", "y"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"12", " ",
SqrtBox["2"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]}]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "-",
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}], ")"}]}]], " ", "x"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["2"], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"12", " ",
SqrtBox["2"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]}]]}], "&&",
RowBox[{"z", "\[LessEqual]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.14\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
1.1372545661180333276263354491675272584`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"47", "+",
RowBox[{"96", " ", "#1"}], "-",
RowBox[{"608", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"1408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"512", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 1.1372545661180333`},
"NumericalApproximation"],
Root[47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]]}], "&&",
RowBox[{
RowBox[{
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "y"}], "+",
RowBox[{"4", " ",
SqrtBox["2"], " ", "z"}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-9.26\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters ->
False], -9.26171044984559976853688567643985152245`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"2048", "-",
RowBox[{"32768", " ", "#1"}], "-",
RowBox[{"10240", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"17408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12416", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"3328", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"448", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"32", " ",
SuperscriptBox["#1", "7"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -9.2617104498456},
"NumericalApproximation"],
Root[
2048 - 32768 # - 10240 #^2 + 17408 #^3 + 12416 #^4 + 3328 #^5 + 448 #^6 +
32 #^7 + #^8& , 1, 0]]}], "\[LessEqual]",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "-",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], " ", "x"}]}], "&&",
RowBox[{
RowBox[{
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "x"}], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "-",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], " ", "y"}], "+",
RowBox[{"4", " ",
SqrtBox["2"], " ", "z"}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-9.26\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters ->
False], -9.26171044984559976853688567643985152245`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"2048", "-",
RowBox[{"32768", " ", "#1"}], "-",
RowBox[{"10240", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"17408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12416", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"3328", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"448", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"32", " ",
SuperscriptBox["#1", "7"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -9.2617104498456},
"NumericalApproximation"],
Root[
2048 - 32768 # - 10240 #^2 + 17408 #^3 + 12416 #^4 + 3328 #^5 + 448 #^6 +
32 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", "0"}], "&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"4", "-",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], " ", "x"}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "y"}], "+",
RowBox[{"8", " ", "z"}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-17.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters ->
False], -17.09803652894426662101068359334021806717`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "557056"}], "-",
RowBox[{"655360", " ", "#1"}], "+",
RowBox[{"802816", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"679936", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"186368", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"24576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"1728", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["#1", "7"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -17.098036528944267`},
"NumericalApproximation"],
Root[-557056 - 655360 # + 802816 #^2 + 679936 #^3 + 186368 #^4 +
24576 #^5 + 1728 #^6 + 64 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", "0"}],
"&&",
RowBox[{
RowBox[{
RowBox[{"4", " ",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], " ", "x"}], "+",
RowBox[{"8", " ", "z"}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-17.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters ->
False], -17.09803652894426662101068359334021806717`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "557056"}], "-",
RowBox[{"655360", " ", "#1"}], "+",
RowBox[{"802816", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"679936", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"186368", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"24576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"1728", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["#1", "7"]}], "+",
SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -17.098036528944267`},
"NumericalApproximation"],
Root[-557056 - 655360 # + 802816 #^2 + 679936 #^3 + 186368 #^4 +
24576 #^5 + 1728 #^6 + 64 #^7 + #^8& , 1, 0]]}], "\[LessEqual]",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"4", "-",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], " ", "y"}]}], "&&",
RowBox[{"y", "<", "x"}]}]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[4]=",ExpressionUUID->"1655042a-c7c9-4f80-87a1-0f6ee36e88e1"]
}, Open ]],
Cell["50+ GB", "Text",ExpressionUUID->"ac912842-f802-4831-990f-7fbd974d0e50"],
Cell[BoxData[
RowBox[{"cad", "=",
RowBox[{"CylindricalDecomposition", "[",
RowBox[{"reg", ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[5]:=",ExpressionUUID->"d8e3c1a6-19d6-47a3-84f1-9b4de49e6669"],
Cell[BoxData[
RowBox[{"8",
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[6]:=",ExpressionUUID->"ab1b6b6d-b3e6-40e0-bede-6fff20928f13"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxy", "=",
RowBox[{"8",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}],
"//", "Timing"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[7]:=",ExpressionUUID->"99182a96-2712-48fe-af1d-d37d92528519"],
Cell[BoxData[
RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"405909af-aac4-459e-b1bc-029a1238e5c4"],
Cell[BoxData[
RowBox[{
RowBox[{"LogSimplify", "[", "rxy", "]"}], "//", "FullSimplify"}]], "Input",E\
xpressionUUID->"b9c1a8e4-493b-4cdf-916f-356f1060e49a"]
}, Open ]],
Cell[CellGroupData[{
Cell["Boole Integrate doing z integral first", "Subsubsection",ExpressionUUID->"e2da23e2-7784-49d7-b2cb-a85e22289786"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"ymin", ",", "ymax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "==",
RowBox[{"CoordinateBounds", "[", "p", "]"}]}]], "Input",ExpressionUUID->\
"b13fec0e-5fa2-4b24-a740-b71fb2888dfb"],
Cell[BoxData[
RowBox[{"ineq", "=",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[11]:=",ExpressionUUID->"4430d2f6-8dbf-445d-af78-5fe581b8d7af"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i1", "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Boole", "[", "ineq", "]"}],
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[12]:=",ExpressionUUID->"89a0603b-793f-4ae2-9bf0-d2a4de6fd6f9"],
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[9]:=",ExpressionUUID->"57801585-cd3e-4554-a7cb-77a31fe2802a"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i2", "=",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"9336af2c-6037-47ad-926e-\
16df8c6f92a3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"d41d431e-199d-496a-b5a7-a6ab9133be29"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[7]:=",ExpressionUUID->"97c620e3-bd59-4d95-86be-98db38cb24bf"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.658\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.65787343954424948311299203851376660168`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"2145089", "-",
RowBox[{"110505920", " ", "#1"}], "+",
RowBox[{"2245288000", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"22815904000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"122232480000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"341824000000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"484736000000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"307200000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"54400000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.6578734395442495},
"NumericalApproximation"],
Root[2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 +
122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 - 307200000000 #^7 +
54400000000 #^8& , 5, 0]]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[7]=",ExpressionUUID->"0f87bfaa-d48c-4f70-9010-026d5b3be371"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[8]:=",ExpressionUUID->"1090a92b-b2af-4a70-957c-9632cca6b905"],
Cell[BoxData["0.6578734395442495`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[8]=",ExpressionUUID->"2bb6502a-0f51-4652-8312-898aae9a64ad"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[9]:=",ExpressionUUID->"ccccb30e-6f7f-442d-b43c-39d8cb0fa5dc"],
Cell[BoxData["0.6578734395442626`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[9]=",ExpressionUUID->"2a7d1e18-e493-42cc-97d1-c6f72a25869b"]
}, Open ]],
Cell[CellGroupData[{
Cell["Integrate over Polyhedron", "Subsubsection",ExpressionUUID->"95593c03-1fc6-48cb-b836-4bd3e5ad9a0c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(",
RowBox[{"rxy2", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[10]:=",ExpressionUUID->"3729e4a1-a769-4ec3-b8d7-8c18906cc02f"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.658\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.65787343954424948311299203851376660168`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"2145089", "-",
RowBox[{"110505920", " ", "#1"}], "+",
RowBox[{"2245288000", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"22815904000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"122232480000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"341824000000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"484736000000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"307200000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"54400000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.6578734395442495},
"NumericalApproximation"],
Root[2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 +
122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 - 307200000000 #^7 +
54400000000 #^8& , 5, 0]]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[10]=",ExpressionUUID->"491abb18-be40-4ded-a137-4981761c1da4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "rxy2", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[11]:=",ExpressionUUID->"974b8deb-2c37-4b31-b30e-041247e8e970"],
Cell[BoxData["0.6578734395442495`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[11]=",ExpressionUUID->"bbd879e4-76cd-49a4-9824-228c00e79145"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSphericalRadius", "Subsection",
FontColor->RGBColor[
1, 0, 0],ExpressionUUID->"dbbb1119-4d06-4f7a-9047-16050fa0e15d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[12]:=",ExpressionUUID->"37d8f707-2a69-4b0f-97af-58c4dfb91211"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[12]=",ExpressionUUID->"8cf98445-23ae-4f0e-bb43-5f2c2cbee165"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[13]:=",ExpressionUUID->"774b113b-dab7-4d74-a38c-ac6ee9aa1434"],
Cell[BoxData["0.9389030769964997`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[13]=",ExpressionUUID->"43ecb4a3-b859-4e8c-89cd-619503ff9290"]
}, Open ]],
Cell[BoxData[
RowBox[{"ClosestMeanSphericalRadius", "[", "%", "]"}]], "Input",ExpressionUUID->"f56d09fa-8cde-4088-b9e8-c1fe843e0d8d"],
Cell[CellGroupData[{
Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"e7d641d2-d2e4-4ff2-a632-2191ba4b3686"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxyz", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\
"5ca87a80-cf9b-4b36-ae8b-b3d3bac561e3"],
Cell[BoxData[
RowBox[{"N", "[", "rxyz", "]"}]], "Input",ExpressionUUID->"c4097a39-df83-4d4a-956a-856f393f597e"]
}, Open ]],
Cell[CellGroupData[{
Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"38184e23-0072-468a-9fff-70cf2a30822c"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxyz", "=",
RowBox[{"MeanSphericalRadius", "[",
RowBox[{"p", ",",
RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",",
RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"985f288a-b3a4-4e7d-9e08-f15b7d4fee82"],
Cell[BoxData[
RowBox[{"N", "[", "rxyz", "]"}]], "Input",ExpressionUUID->"995b6c02-e70c-4a59-b556-a186caf521e6"],
Cell[BoxData[
RowBox[{
RowBox[{"LogSimplify", "[", "rxyz", "]"}], "//", "FullSimplify"}]], "Input",\
ExpressionUUID->"6dd8ee74-138b-4ca2-acf1-66b6fe00060c"]
}, Open ]],
Cell[CellGroupData[{
Cell["CAD", "Subsubsection",ExpressionUUID->"976307cc-bc63-4945-a2c7-5a9081146da6"],
Cell[BoxData[
RowBox[{"cad", "=",
RowBox[{"CylindricalDecomposition", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}],
"]"}]}]], "Input",ExpressionUUID->"50541120-15e8-4729-8516-de23100830e4"],
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]], "Input",Expres\
sionUUID->"cd71902e-d781-4228-aed7-f641578f9e04"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxyz", "=",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"cf595278-c041-4740-acd5-\
54f75a530a1b"],
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"rxyz", ",", "20"}], "]"}]], "Input",ExpressionUUID->"e7e9ab0a-35a6-\
4667-8626-5b8075a48b2f"],
Cell[BoxData[
RowBox[{"rxysimp1", "=",
RowBox[{
RowBox[{
RowBox[{"ResourceFunction", "[", "\"\\"", "]"}], "[", "rxy",
"]"}], "//", "FullSimplify"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (2)) \
In[10]:=",ExpressionUUID->"ba6da336-4ecb-4a78-a9c4-268a23b56f30"]
}, Open ]],
Cell[CellGroupData[{
Cell["CAD over 1/8", "Subsubsection",ExpressionUUID->"29fd82b1-bbca-44e3-9e21-c5b21b85ae0c"],
Cell[BoxData[
RowBox[{"reg", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&",
RowBox[{"0", "<", "y", "<", "x"}]}], "]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[4]:=",ExpressionUUID->"52b5572a-d521-4dcb-a6ab-c7e6b5f50451"],
Cell[BoxData[
RowBox[{"cad", "=",
RowBox[{"CylindricalDecomposition", "[",
RowBox[{"reg", ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[5]:=",ExpressionUUID->"2471bcd0-c826-4623-803e-e373b6949125"],
Cell[BoxData[
RowBox[{"8",
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input",Exp\
ressionUUID->"98c3563d-ecda-40f2-bce4-0b9a47332050"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"rxyz", "=",
RowBox[{"8",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]],
RowBox[{"Boole", "[", "cad", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}],
"//", "Timing"}]], "Input",ExpressionUUID->"8133b234-a71d-4e9f-9e62-\
6a97a55dd0c3"],
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{"rxyz", ",", "20"}], "]"}]], "Input",ExpressionUUID->"f5028cc1-4e21-\
47ae-9909-9e7fc97b0046"],
Cell[BoxData[
RowBox[{"rxysimp1", "=",
RowBox[{
RowBox[{"LogSimplify", "[", "rxy", "]"}], "//",
"FullSimplify"}]}]], "Input",ExpressionUUID->"e62d826d-7525-4922-916b-\
d3866d5b507e"]
}, Open ]],
Cell[CellGroupData[{
Cell["Boole Integrate doing z integral first", "Subsubsection",ExpressionUUID->"04ce0091-6251-4108-8c7c-38206c60788a"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"ymin", ",", "ymax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "=",
RowBox[{"CoordinateBounds", "[", "p", "]"}]}]], "Input",ExpressionUUID->\
"a70b8819-ea36-4b67-aad9-149fbf0d8a5e"],
Cell[BoxData[
RowBox[{"ineq", "=",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}], "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[11]:=",ExpressionUUID->"7945ae7c-125d-43c9-bd85-3a231c417100"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i1", "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Boole", "[", "ineq", "]"}],
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"53a366e1-e9f4-4243-996c-\
e571d2b730f3"],
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input",
CellLabel->
"(byblis65 V13.2.0) \
In[9]:=",ExpressionUUID->"6fad7799-c5ee-469d-9e78-f7040c7531d3"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"i2", "=",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox["i1", "vol"], ",",
RowBox[{"{",
RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",ExpressionUUID->"a47f2326-687d-4444-a496-\
bc621422adc2"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"2ec93757-9eb3-4688-8a59-4a6af439693b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\
CellLabel->
"(V14.0.0-Devel (1)) \
In[14]:=",ExpressionUUID->"c9a68536-59e3-462c-a882-6fe2ffb316dc"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.942\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.94151405323556680571073229657486081123`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "335973295201"}], "-",
RowBox[{"13525179185280", " ", "#1"}], "+",
RowBox[{"36744783040000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"917523349504000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"584913838080000", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"749289472000000", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"2607775744000000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"183500800000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"222822400000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.9415140532355668},
"NumericalApproximation"],
Root[-335973295201 - 13525179185280 # + 36744783040000 #^2 +
917523349504000 #^3 + 584913838080000 #^4 + 749289472000000 #^5 -
2607775744000000 #^6 - 183500800000000 #^7 + 222822400000000 #^8& , 5,
0]]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[14]=",ExpressionUUID->"8a3e9c6b-792b-4ead-bf29-a267de5d530a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[15]:=",ExpressionUUID->"d62929a9-d8f7-4672-9c56-d9df14f8d291"],
Cell[BoxData["0.9415140532355668`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[15]=",ExpressionUUID->"be5db51b-d3ab-44ad-86cc-e068427cee36"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}],
"vol"]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[16]:=",ExpressionUUID->"fb7b88fe-6d27-497f-9ce6-6fd9b88abc11"],
Cell[BoxData["0.9415140532355656`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[16]=",ExpressionUUID->"3dea003d-7d14-4cd0-9427-e8795b9a0b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"9362d5c0-4b85-47eb-9f3f-9d026fefc09c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(",
RowBox[{"rxy2", "=",
RowBox[{
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}],
"]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[17]:=",ExpressionUUID->"a6fe919d-d3c3-441c-9d64-69fc1f8b6b9d"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.942\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.94151405323556680571073229657486081123`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "335973295201"}], "-",
RowBox[{"13525179185280", " ", "#1"}], "+",
RowBox[{"36744783040000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"917523349504000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"584913838080000", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"749289472000000", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"2607775744000000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"183500800000000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"222822400000000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 0.9415140532355668},
"NumericalApproximation"],
Root[-335973295201 - 13525179185280 # + 36744783040000 #^2 +
917523349504000 #^3 + 584913838080000 #^4 + 749289472000000 #^5 -
2607775744000000 #^6 - 183500800000000 #^7 + 222822400000000 #^8& , 5,
0]]], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[17]=",ExpressionUUID->"26a0fb24-bdaa-45c2-88a7-0dd59f5bcea3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "rxy2", "]"}]], "Input",
CellLabel->
"(V14.0.0-Devel (1)) \
In[18]:=",ExpressionUUID->"5067710a-19cb-4c11-9386-434ecb7681b6"],
Cell[BoxData["0.9415140532355668`"], "Output",
CellLabel->
"(V14.0.0-Devel (1)) \
Out[18]=",ExpressionUUID->"2e974a37-9e2c-4ede-8370-e1e51f7fef2c"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Midsphere", "Subsection",ExpressionUUID->"297887c8-4409-43b7-b902-a56f4bd0b08d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"sphere", "=",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input",
CellLabel->
"In[111]:=",ExpressionUUID->"c7657c97-7b54-411f-9d2c-5aa471125503"],
Cell[BoxData[
RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output",
CellLabel->
"Out[111]=",ExpressionUUID->"9f6c7b79-cbfe-4581-8a1b-b0d661952234"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"sphere", "=",
RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\
CellLabel->
"In[112]:=",ExpressionUUID->"89fae154-b827-4fe0-8c4e-38c733e28a0a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.918814`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[112]=",ExpressionUUID->"63895ebc-14f9-4208-8b0c-ad989e571d10"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["SurfaceArea", "Subsection",ExpressionUUID->"a0548945-4d6f-434b-a9a3-46befce92396"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[113]:=",ExpressionUUID->"1f74bb24-0cd1-4743-9b6f-a1efa37d242d"],
Cell[BoxData[
RowBox[{"10", "+",
RowBox[{"6", " ",
SqrtBox["3"]}]}]], "Output",
CellLabel->
"Out[113]=",ExpressionUUID->"f4d8770a-6324-4016-b68e-77f8b1cc1c28"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[115]:=",ExpressionUUID->"68ed03df-6799-4d00-a335-a09b329d9fbb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"7.595038`", ",",
RowBox[{"10", "+",
RowBox[{"6", " ",
SqrtBox["3"]}]}]}], "}"}]], "Output",
CellLabel->
"Out[115]=",ExpressionUUID->"a98afb4b-b8d9-49f2-843e-def6c836340e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Total", "[",
RowBox[{"Area", "/@",
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//",
"RootReduce"}], "//", "Timing"}]], "Input",
CellLabel->
"In[116]:=",ExpressionUUID->"285972fd-cd01-4255-8323-3f28e92bcda3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"38.347541`", ",",
RowBox[{"10", "+",
RowBox[{"6", " ",
SqrtBox["3"]}]}]}], "}"}]], "Output",
CellLabel->
"Out[116]=",ExpressionUUID->"ba56bece-f9a5-4eb8-980f-614e6958d901"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"71e95632-71fc-4b5f-af70-e71baacb6d48"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[117]:=",ExpressionUUID->"a49fda24-632c-47e2-acd3-b91ba48cd0eb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\<\"Antiprism\"\>", ",", "8"}], "}"}], "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"3", ",", "4", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13",
",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",",
"20", ",", "21", ",", "22"}], "}"}], "}"}]}], ",",
RowBox[{"\<\"GyroelongatedSquareBicupola\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14",
",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",",
"21", ",", "22", ",", "23", ",", "24"}], "}"}], "}"}]}], ",",
RowBox[{"\<\"GyroelongatedSquareCupola\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "9", ",",
"10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",",
"16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",",
"22"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "4", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",",
"12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",",
"18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",",
"24"}], "}"}]}], "}"}]}], ",",
RowBox[{"\<\"SquareCupola\"\>", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "5", ",", "6", ",", "9", ",", "16", ",", "17", ",",
"18", ",", "19", ",", "20", ",", "21", ",", "22"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "4", ",", "7", ",", "8", ",", "10", ",", "11", ",", "12",
",", "13", ",", "14", ",", "15", ",", "23", ",", "24"}], "}"}]}],
"}"}]}]}], "}"}]], "Output",
CellLabel->
"Out[117]=",ExpressionUUID->"9fa1cdd5-f06e-4688-bbf0-e957ea7a8f5b"]
}, Open ]],
Cell[CellGroupData[{
Cell["Platonic", "Subsubsection",ExpressionUUID->"a38e6152-5dc2-4148-b5bf-bdee38909557"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"h", "=",
RowBox[{"VertexSubsetHulls", "[",
RowBox[{"p", ",", "\"\\"", ",",
RowBox[{"\"\\"", "\[Rule]",
RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[118]:=",ExpressionUUID->"7e60831c-1ad1-4ecf-b14a-5dd92f135e76"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"0f05d90e-18d4-42c9-895e-b8da8614ba47"],
Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"d391dfc1-2513-4ad5-9cb7-fac8a5e47af6"],
Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \
"Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"3ac27770-858a-41f7-9a3e-54a1051ccb14"],
Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"2b8b4ecd-0785-469d-8ff7-b256821684ac"],
Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"6ae3255c-037b-4021-942f-83177704fbf5"],
Cell[BoxData["\<\"Finding octahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"a0525fd7-cafb-404f-a2d2-358d1f376b21"],
Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"ab252536-24d4-4f82-9078-e081ce9fa195"],
Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \
triangles...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[118]:=",ExpressionUUID->"8b6c35a8-b461-4588-9ea4-558c129858c3"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.859862`", ",",
RowBox[{"{", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[118]=",ExpressionUUID->"af7a0518-79d8-4053-bc8e-1767f9414eda"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Volume", "Subsection",ExpressionUUID->"d15e4e80-8ba5-46ff-8cef-b8293bbdf677"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",
CellLabel->
"In[119]:=",ExpressionUUID->"1ac987c3-1dad-4ce6-9683-ea0acae938c6"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"8.15\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
8.15357483362126345127762760967016220093`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 8.153574833621263},
"NumericalApproximation"],
Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 +
594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output",
CellLabel->
"Out[119]=",ExpressionUUID->"6d824cd1-de83-4c55-a763-743af1d65ca7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[120]:=",ExpressionUUID->"a142dd49-5646-4783-ba54-60254d03125b"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"8.15\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
8.15357483362126345127762760967016220093`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 8.153574833621263},
"NumericalApproximation"],
Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 +
594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output",
CellLabel->
"Out[120]=",ExpressionUUID->"dad10d8c-d4d8-4743-a0a9-4eb375035e28"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronVolume", "[",
RowBox[{"p", ",",
RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[121]:=",ExpressionUUID->"108519e2-21e6-4fea-b60d-e46084dea4f7"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"8.15\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
8.15357483362126345127762760967016220093`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 8.153574833621263},
"NumericalApproximation"],
Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 +
594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output",
CellLabel->
"Out[121]=",ExpressionUUID->"c67ed878-8fde-489e-b001-7d81d23ef49d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ToRadicals", "[", "%", "]"}]], "Input",
CellLabel->
"In[122]:=",ExpressionUUID->"c0c6a145-cc78-4032-9d8a-d4cc13def35d"],
Cell[BoxData[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"8.15\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
8.15357483362126345127762760967016220093`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 8.153574833621263},
"NumericalApproximation"],
Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 +
594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output",
CellLabel->
"Out[122]=",ExpressionUUID->"7782eaf7-2d7a-446a-8e70-2dab85fac3c1"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Perspective projections", "Section",ExpressionUUID->"fe49d574-16bb-4638-bbcd-a69874c61c8b"],
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
",",
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"c", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",
CellLabel->"In[45]:=",ExpressionUUID->"42848649-95f7-4bac-831b-6d45d5e0c0e1"],
Cell[CellGroupData[{
Cell["XXX", "Subsection",ExpressionUUID->"ea65f44f-5f7e-41d0-aa20-768cd3d0c930"],
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ","}],
"]"}]], "Input",ExpressionUUID->"fb176fb3-1c77-47a5-a612-85ac11687604"]
}, Open ]]
}, Closed]]
}, Open ]]
},
InitializationCellEvaluation->Automatic,
WindowSize->{1011, 862},
WindowMargins->{{-1158, Automatic}, {Automatic, -175}},
FrontEndVersion->"14.0 for Mac OS X ARM (64-bit) (September 6, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"e212e72e-1187-4858-b46e-09cc2bf9c735"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 101, 0, 98, "Title",ExpressionUUID->"bebbcba6-4d33-403d-85bd-1522d079e6c6"],
Cell[CellGroupData[{
Cell[706, 26, 83, 0, 54, "Subsection",ExpressionUUID->"8e392c9b-7a17-4c1b-b617-0ae4f5a4f844"],
Cell[792, 28, 115, 3, 58, "Text",ExpressionUUID->"6115558e-c9f2-4e22-9496-a3359153a31a"],
Cell[910, 33, 362, 9, 35, "Text",ExpressionUUID->"8b296164-cf90-419b-8329-8679bff0bb47"],
Cell[1275, 44, 389, 11, 35, "Text",ExpressionUUID->"dd88aca0-1949-4a2e-9977-b3098de66d57"],
Cell[1667, 57, 154, 2, 35, "Text",ExpressionUUID->"fbdbf9bb-7b02-4f6a-9378-199f9c3015ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[1858, 64, 79, 0, 67, "Section",ExpressionUUID->"61bf3932-5a3f-4999-9cc3-259f1988049b"],
Cell[CellGroupData[{
Cell[1962, 68, 228, 5, 30, "Input",ExpressionUUID->"2116699a-8443-4a22-8a5b-fb6fd15651ee"],
Cell[2193, 75, 159, 2, 34, "Output",ExpressionUUID->"2a2fa0d9-43e9-4bf3-9511-f805ecdc036e"]
}, Open ]],
Cell[CellGroupData[{
Cell[2389, 82, 183, 3, 30, "Input",ExpressionUUID->"be6bf588-3b8a-4eab-9e23-300a9680fcfa"],
Cell[2575, 87, 29503, 504, 377, 6854, 132, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"36cc2567-0b81-481d-b40a-8713a3328dc4"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[32127, 597, 77, 0, 67, "Section",ExpressionUUID->"1dc60f21-6afa-4681-8107-f8d76a37175b"],
Cell[CellGroupData[{
Cell[32229, 601, 216, 4, 30, "Input",ExpressionUUID->"05ef11ec-fc4c-4f36-befa-2816fb10225b"],
Cell[32448, 607, 3637, 59, 310, "Output",ExpressionUUID->"abb24f3d-ad21-442b-b0c8-9200e9103072"]
}, Open ]],
Cell[CellGroupData[{
Cell[36122, 671, 244, 5, 30, "Input",ExpressionUUID->"aa765a36-5044-471a-a4ca-40ff833c3213"],
Cell[36369, 678, 3695, 61, 310, "Output",ExpressionUUID->"74d69a86-a0fc-461f-97c1-c463aa3ebd6e"]
}, Open ]],
Cell[40079, 742, 304, 7, 52, "Input",ExpressionUUID->"83d44b12-9bb3-4b70-9c72-2085a9444744"]
}, Closed]],
Cell[CellGroupData[{
Cell[40420, 754, 84, 0, 53, "Section",ExpressionUUID->"9b411472-7b76-40a8-a78e-f7168fc07679"],
Cell[CellGroupData[{
Cell[40529, 758, 94, 0, 45, "Subsubsection",ExpressionUUID->"ddd7fc29-4d9b-4c37-8194-5badf2f115af"],
Cell[40626, 760, 167, 4, 44, "Input",ExpressionUUID->"0fa9fcb6-0efc-420a-aecc-2b41b8070016"],
Cell[CellGroupData[{
Cell[40818, 768, 302, 8, 44, "Input",ExpressionUUID->"90903ef4-62ea-4c29-a716-ba9e9d565ab2"],
Cell[41123, 778, 34965, 680, 75, "Output",ExpressionUUID->"cb713d8a-1cf4-4b5d-aade-afb5d0d003b5"]
}, Open ]],
Cell[CellGroupData[{
Cell[76125, 1463, 236, 6, 44, "Input",ExpressionUUID->"8eed6608-7173-4f20-a1cb-ee12f29af13a"],
Cell[76364, 1471, 1495, 38, 55, "Output",ExpressionUUID->"97374caa-daec-40b0-abe5-6d21fde01595"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[77908, 1515, 85, 0, 54, "Subsection",ExpressionUUID->"461cee03-1522-4810-a1ac-0e6479e2550a"],
Cell[CellGroupData[{
Cell[78018, 1519, 710, 18, 73, "Input",ExpressionUUID->"28b9483a-e3dc-486e-85e9-bf1daafbbf79"],
Cell[78731, 1539, 7145, 140, 388, "Output",ExpressionUUID->"16f21f9b-8a9f-43f3-8e32-501abb2695c2"]
}, Closed]],
Cell[CellGroupData[{
Cell[85913, 1684, 188, 3, 26, "Input",ExpressionUUID->"97629861-28c2-4203-af68-5b9bc263a9d7"],
Cell[86104, 1689, 162, 3, 34, "Output",ExpressionUUID->"2990f2a5-09aa-4b47-bce9-5c97faf44737"]
}, Open ]],
Cell[CellGroupData[{
Cell[86303, 1697, 214, 5, 30, "Input",ExpressionUUID->"28900788-41c5-44cd-b444-cf0b479d7898"],
Cell[86520, 1704, 220, 5, 34, "Output",ExpressionUUID->"96e1f0a5-444f-4e64-ba04-8e4f30229c93"]
}, Open ]],
Cell[CellGroupData[{
Cell[86777, 1714, 218, 5, 30, "Input",ExpressionUUID->"1e802fe8-6820-422a-b5b9-8b2eebe9c1ad"],
Cell[86998, 1721, 220, 5, 34, "Output",ExpressionUUID->"735b78b0-32b6-4e49-b6cf-5a79084a5df4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[87267, 1732, 89, 0, 38, "Subsection",ExpressionUUID->"a7436b9d-7607-4cf6-9986-6151c8440e8f"],
Cell[CellGroupData[{
Cell[87381, 1736, 192, 3, 30, "Input",ExpressionUUID->"010b98df-0bb5-4eff-9771-65a50fc2a347"],
Cell[87576, 1741, 160, 2, 34, "Output",ExpressionUUID->"fcfe9a61-9dd2-4e7d-9897-5b16ef0b8b8a"]
}, Open ]],
Cell[CellGroupData[{
Cell[87773, 1748, 144, 2, 30, "Input",ExpressionUUID->"62f11410-a72a-4518-bde9-fca0d19f01ac"],
Cell[87920, 1752, 4794, 69, 206, "Message",ExpressionUUID->"5da21f9b-5cf0-4f9a-9ee9-ad10f72e8e18"],
Cell[92717, 1823, 36103, 693, 61, "Output",ExpressionUUID->"5ddcae32-484e-4e6c-9cb7-20fbea33da6f"]
}, Open ]],
Cell[CellGroupData[{
Cell[128857, 2521, 232, 6, 30, "Input",ExpressionUUID->"fb80f845-33fc-4f3f-9bf2-a0191b9ee7b0"],
Cell[129092, 2529, 179, 4, 34, "Output",ExpressionUUID->"d8c536fa-f2c0-4824-a9a6-abffa088aa29"]
}, Open ]],
Cell[129286, 2536, 376, 11, 30, "Input",ExpressionUUID->"f19f4681-eb11-4dfd-9dd3-4e3eba746714"]
}, Closed]],
Cell[CellGroupData[{
Cell[129699, 2552, 83, 0, 38, "Subsection",ExpressionUUID->"347d361f-31de-4d09-ba22-a33c4588c88d"],
Cell[CellGroupData[{
Cell[129807, 2556, 149, 2, 30, "Input",ExpressionUUID->"368c0d72-0970-4c98-8ae5-82199e94dbbd"],
Cell[129959, 2560, 110, 1, 34, "Output",ExpressionUUID->"48068cbc-aed9-42ce-b85f-899d2356ea27"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[130118, 2567, 91, 0, 38, "Subsection",ExpressionUUID->"ccacc236-b65c-4e36-8255-0671356d087e"],
Cell[CellGroupData[{
Cell[130234, 2571, 226, 5, 30, "Input",ExpressionUUID->"f6836771-30ad-4e68-95a4-1779abe887ef"],
Cell[130463, 2578, 2936, 85, 123, "Output",ExpressionUUID->"e6f50e28-fb81-46bc-a462-9b9a34b5a50b"]
}, Open ]],
Cell[CellGroupData[{
Cell[133436, 2668, 213, 5, 30, "Input",ExpressionUUID->"664a95f2-e83b-48d3-a4f3-87a45a5ac2cd"],
Cell[133652, 2675, 114, 1, 34, "Output",ExpressionUUID->"c9af5b26-078c-4ad3-a11d-350dcffd8d19"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[133815, 2682, 88, 0, 38, "Subsection",ExpressionUUID->"d7082a99-407b-49aa-b4c6-4dff82912c71"],
Cell[CellGroupData[{
Cell[133928, 2686, 191, 3, 30, "Input",ExpressionUUID->"2c2e4261-9f46-4ada-bbe1-96e5702e9dce"],
Cell[134122, 2691, 129, 2, 34, "Output",ExpressionUUID->"36ae2e6f-6efd-4dfe-9e83-a98d46092d32"]
}, Open ]],
Cell[CellGroupData[{
Cell[134288, 2698, 433, 11, 52, "Input",ExpressionUUID->"66712797-64c5-4ca5-b5e6-da908e51cc56"],
Cell[134724, 2711, 129, 2, 34, "Output",ExpressionUUID->"972cfda9-1ae9-47fd-bf37-d00bef2df8c6"]
}, Open ]]
}, Closed]],
Cell[134880, 2717, 82, 0, 38, "Subsection",ExpressionUUID->"940321c0-d329-4895-b0f3-bacf14d64abd"],
Cell[CellGroupData[{
Cell[134987, 2721, 96, 0, 38, "Subsection",ExpressionUUID->"ad514590-121e-490c-9b0b-06d3c3c69a90"],
Cell[CellGroupData[{
Cell[135108, 2725, 199, 3, 30, "Input",ExpressionUUID->"88582903-ac25-4e6e-a578-2a95ffc978df"],
Cell[135310, 2730, 223, 7, 40, "Output",ExpressionUUID->"164e2099-ef7f-46ed-8cbb-8b359a7f001e"]
}, Open ]],
Cell[CellGroupData[{
Cell[135570, 2742, 218, 5, 30, "Input",ExpressionUUID->"09f00f63-7fe6-4f84-8bdb-922bebe7e0c8"],
Cell[135791, 2749, 223, 7, 40, "Output",ExpressionUUID->"dc986d5b-8e31-4cb5-9399-a20d4fc1b357"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[136063, 2762, 90, 0, 38, "Subsection",ExpressionUUID->"46e9b3c3-8bb3-4f31-a2eb-5658dd8a4c89"],
Cell[CellGroupData[{
Cell[136178, 2766, 193, 3, 30, "Input",ExpressionUUID->"32b5449c-267d-47dc-8eb0-efb42f174ed1"],
Cell[136374, 2771, 5328, 123, 42, "Output",ExpressionUUID->"632575fc-7063-4e4a-8d2e-26a7ad7683dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[141739, 2899, 362, 10, 49, "Input",ExpressionUUID->"26da62fd-ba04-4030-963b-33c964101e8b"],
Cell[142104, 2911, 114, 1, 34, "Output",ExpressionUUID->"fa6e7333-d9af-4b5b-9530-9d23b6a6a558"]
}, Open ]],
Cell[CellGroupData[{
Cell[142255, 2917, 187, 4, 30, "Input",ExpressionUUID->"7a123ed0-379c-43a3-adaa-9f6c3ae17a2f"],
Cell[142445, 2923, 114, 1, 34, "Output",ExpressionUUID->"0227c32a-6615-4ca0-a9dd-7f05918017f2"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[142608, 2930, 85, 0, 38, "Subsection",ExpressionUUID->"55152c01-243a-4fce-865a-751417b3ca79"],
Cell[CellGroupData[{
Cell[142718, 2934, 188, 3, 30, "Input",ExpressionUUID->"b80d0586-ea9d-4794-af9d-9a39a7324e1f"],
Cell[142909, 2939, 160, 2, 34, "Output",ExpressionUUID->"5867cb8c-ebd1-45b8-9741-4d5a1895cb3b"]
}, Open ]],
Cell[CellGroupData[{
Cell[143106, 2946, 144, 3, 30, "Input",ExpressionUUID->"180f9203-318e-4dcc-8bdd-c05cd1afbb7f"],
Cell[143253, 2951, 4788, 69, 206, "Message",ExpressionUUID->"72819d0e-28a5-417d-be56-387cab3221ab"],
Cell[148044, 3022, 36103, 694, 61, "Output",ExpressionUUID->"d5c0aba9-200c-4baa-8c2b-40583fd2e0ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[184184, 3721, 174, 4, 30, "Input",ExpressionUUID->"b2e624ef-92ab-495e-956b-fcbaa1078723"],
Cell[184361, 3727, 128, 3, 34, "Output",ExpressionUUID->"c416270e-a452-480b-8fce-1283f492c183"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[184538, 3736, 132, 2, 38, "Subsection",ExpressionUUID->"a322f0f4-a333-42f0-b34a-293ced2d3a19"],
Cell[CellGroupData[{
Cell[184695, 3742, 225, 5, 44, "Input",ExpressionUUID->"da471ebf-d216-4722-8f74-7c051523ea63"],
Cell[184923, 3749, 183, 4, 48, "Output",ExpressionUUID->"b1ab2dec-0b69-441e-9e31-ae1338eec582"]
}, Open ]],
Cell[185121, 3756, 109, 1, 30, "Input",ExpressionUUID->"a0c4e92c-3a30-4944-934d-c87591878765"],
Cell[CellGroupData[{
Cell[185255, 3761, 410, 14, 72, "Input",ExpressionUUID->"61ee1fc1-4709-4600-8baa-879a22765491"],
Cell[185668, 3777, 473, 10, 46, "Message",ExpressionUUID->"4f2fa515-3c66-4019-9a38-bf2257259d7f"],
Cell[186144, 3789, 150, 3, 48, "Output",ExpressionUUID->"cf005891-bb0c-48c0-89ec-84bfa3247a2b"]
}, Open ]],
Cell[CellGroupData[{
Cell[186331, 3797, 185, 4, 44, "Input",ExpressionUUID->"91d75801-316a-4556-aadf-7918dafa2b07"],
Cell[186519, 3803, 342, 8, 24, "Print",ExpressionUUID->"2fe7f33a-8b10-4708-bcb5-3a1f69d8eec4"],
Cell[186864, 3813, 138, 3, 48, "Output",ExpressionUUID->"feafd3a3-3e41-4955-960c-0a9d6c10a6c8"]
}, Open ]],
Cell[CellGroupData[{
Cell[187039, 3821, 105, 0, 45, "Subsubsection",ExpressionUUID->"13cc068b-c00c-4a41-8299-44b6652a2a78"],
Cell[187147, 3823, 479, 15, 70, "Input",ExpressionUUID->"d8a18726-eabe-4f9b-a2e8-bf77dc161d6b"],
Cell[187629, 3840, 111, 1, 30, "Input",ExpressionUUID->"4bd0adaf-eff3-4c8b-b90f-ec3a8d0d037c"]
}, Open ]],
Cell[CellGroupData[{
Cell[187777, 3846, 155, 2, 45, "Subsubsection",ExpressionUUID->"e4bb7f00-b936-4c00-a965-e7fe64e69941"],
Cell[CellGroupData[{
Cell[187957, 3852, 402, 11, 44, "Input",ExpressionUUID->"3de79123-5aca-4f8c-a446-f6ff676b9c05"],
Cell[CellGroupData[{
Cell[188384, 3867, 667, 17, 44, "Print",ExpressionUUID->"606a03c7-4c80-491e-9dc5-49f6249c6854"],
Cell[189054, 3886, 182, 3, 24, "Print",ExpressionUUID->"38bc660b-d328-478a-85d3-94e644f64436"],
Cell[189239, 3891, 197, 5, 24, "Print",ExpressionUUID->"aba4e28e-c5c0-4e98-a765-6babfda4cd2c"],
Cell[189439, 3898, 169, 3, 24, "Print",ExpressionUUID->"e442316d-272a-48d0-903b-6ade44d7d4d4"],
Cell[189611, 3903, 1517, 59, 53, "Print",ExpressionUUID->"ae357bab-a6f7-4c44-a33e-d83472ff6a0d"],
Cell[191131, 3964, 175, 3, 24, "Print",ExpressionUUID->"43cb2ae9-a73d-4efe-8594-330cc58880b7"],
Cell[191309, 3969, 6095, 163, 137, "Print",ExpressionUUID->"4853770c-b2fc-4c6e-ad7b-ee78b4e5fb94"],
Cell[197407, 4134, 184, 3, 24, "Print",ExpressionUUID->"6be283a5-62ab-4221-9a43-5ab73603000c"],
Cell[197594, 4139, 5073, 148, 137, "Print",ExpressionUUID->"a74a853a-8da7-42d4-b026-cbf6a049f038"]
}, Open ]],
Cell[202682, 4290, 139, 3, 48, "Output",ExpressionUUID->"1e253cad-0975-46b8-a8a2-b830bb987537"]
}, Open ]],
Cell[CellGroupData[{
Cell[202858, 4298, 160, 4, 44, "Input",ExpressionUUID->"b88f8665-e10c-47ef-8f90-389e325030cd"],
Cell[203021, 4304, 134, 3, 48, "Output",ExpressionUUID->"0d7542cb-3492-462b-a9d7-be31ad4380a9"]
}, Open ]],
Cell[203170, 4310, 158, 3, 30, "Input",ExpressionUUID->"125e8db2-2141-4c7d-a991-446fe907dd1f"]
}, Closed]],
Cell[CellGroupData[{
Cell[203365, 4318, 83, 0, 37, "Subsubsection",ExpressionUUID->"c0dd0f8c-d09d-41f7-a379-b204f1693ad8"],
Cell[203451, 4320, 77, 0, 35, "Text",ExpressionUUID->"a9392263-2106-40f6-b238-ef663f6849f2"],
Cell[203531, 4322, 481, 13, 44, "Input",ExpressionUUID->"b72aa733-111e-4d1c-9b26-435a4af3363d"],
Cell[204015, 4337, 461, 14, 58, "Input",ExpressionUUID->"3775b55e-e447-4ad8-a3f8-549ccfec6eda"],
Cell[204479, 4353, 579, 18, 70, "Input",ExpressionUUID->"8c6b46c1-7659-405b-8ee6-2f128e976a13"]
}, Open ]],
Cell[CellGroupData[{
Cell[205095, 4376, 93, 0, 45, "Subsubsection",ExpressionUUID->"8849a97d-698f-4368-9c56-ad3c247e46eb"],
Cell[CellGroupData[{
Cell[205213, 4380, 451, 12, 44, "Input",ExpressionUUID->"63332d69-1032-4731-ab1e-685f35222a6d"],
Cell[205667, 4394, 15250, 458, 254, "Output",ExpressionUUID->"1655042a-c7c9-4f80-87a1-0f6ee36e88e1"]
}, Open ]],
Cell[220932, 4855, 77, 0, 35, "Text",ExpressionUUID->"ac912842-f802-4831-990f-7fbd974d0e50"],
Cell[221012, 4857, 321, 9, 44, "Input",ExpressionUUID->"d8e3c1a6-19d6-47a3-84f1-9b4de49e6669"],
Cell[221336, 4868, 537, 17, 72, "Input",ExpressionUUID->"ab1b6b6d-b3e6-40e0-bede-6fff20928f13"],
Cell[221876, 4887, 658, 21, 84, "Input",ExpressionUUID->"99182a96-2712-48fe-af1d-d37d92528519"],
Cell[222537, 4910, 111, 1, 30, "Input",ExpressionUUID->"405909af-aac4-459e-b1bc-029a1238e5c4"],
Cell[222651, 4913, 158, 3, 30, "Input",ExpressionUUID->"b9c1a8e4-493b-4cdf-916f-356f1060e49a"]
}, Open ]],
Cell[CellGroupData[{
Cell[222846, 4921, 118, 0, 45, "Subsubsection",ExpressionUUID->"e2da23e2-7784-49d7-b2cb-a85e22289786"],
Cell[222967, 4923, 378, 11, 30, "Input",ExpressionUUID->"b13fec0e-5fa2-4b24-a740-b71fb2888dfb"],
Cell[223348, 4936, 309, 8, 44, "Input",ExpressionUUID->"4430d2f6-8dbf-445d-af78-5fe581b8d7af"],
Cell[223660, 4946, 514, 17, 54, "Input",ExpressionUUID->"89a0603b-793f-4ae2-9bf0-d2a4de6fd6f9"],
Cell[224177, 4965, 353, 10, 61, "Input",ExpressionUUID->"57801585-cd3e-4554-a7cb-77a31fe2802a"],
Cell[224533, 4977, 407, 12, 47, "Input",ExpressionUUID->"9336af2c-6037-47ad-926e-16df8c6f92a3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[224989, 4995, 104, 0, 38, "Subsection",ExpressionUUID->"d41d431e-199d-496a-b5a7-a6ab9133be29"],
Cell[CellGroupData[{
Cell[225118, 4999, 234, 6, 44, "Input",ExpressionUUID->"97c620e3-bd59-4d95-86be-98db38cb24bf"],
Cell[225355, 5007, 1589, 39, 55, "Output",ExpressionUUID->"0f87bfaa-d48c-4f70-9010-026d5b3be371"]
}, Open ]],
Cell[CellGroupData[{
Cell[226981, 5051, 157, 4, 44, "Input",ExpressionUUID->"1090a92b-b2af-4a70-957c-9632cca6b905"],
Cell[227141, 5057, 149, 3, 48, "Output",ExpressionUUID->"2bb6502a-0f51-4652-8312-898aae9a64ad"]
}, Open ]],
Cell[CellGroupData[{
Cell[227327, 5065, 392, 13, 66, "Input",ExpressionUUID->"ccccb30e-6f7f-442d-b43c-39d8cb0fa5dc"],
Cell[227722, 5080, 149, 3, 48, "Output",ExpressionUUID->"2a7d1e18-e493-42cc-97d1-c6f72a25869b"]
}, Open ]],
Cell[CellGroupData[{
Cell[227908, 5088, 105, 0, 45, "Subsubsection",ExpressionUUID->"95593c03-1fc6-48cb-b836-4bd3e5ad9a0c"],
Cell[CellGroupData[{
Cell[228038, 5092, 507, 16, 72, "Input",ExpressionUUID->"3729e4a1-a769-4ec3-b8d7-8c18906cc02f"],
Cell[228548, 5110, 1590, 39, 55, "Output",ExpressionUUID->"491abb18-be40-4ded-a137-4981761c1da4"]
}, Open ]],
Cell[CellGroupData[{
Cell[230175, 5154, 161, 4, 44, "Input",ExpressionUUID->"974b8deb-2c37-4b31-b30e-041247e8e970"],
Cell[230339, 5160, 150, 3, 48, "Output",ExpressionUUID->"bbd879e4-76cd-49a4-9824-228c00e79145"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[230550, 5170, 130, 2, 38, "Subsection",ExpressionUUID->"dbbb1119-4d06-4f7a-9047-16050fa0e15d"],
Cell[CellGroupData[{
Cell[230705, 5176, 224, 5, 44, "Input",ExpressionUUID->"37d8f707-2a69-4b0f-97af-58c4dfb91211"],
Cell[230932, 5183, 184, 4, 48, "Output",ExpressionUUID->"8cf98445-23ae-4f0e-bb43-5f2c2cbee165"]
}, Open ]],
Cell[CellGroupData[{
Cell[231153, 5192, 448, 15, 72, "Input",ExpressionUUID->"774b113b-dab7-4d74-a38c-ac6ee9aa1434"],
Cell[231604, 5209, 150, 3, 48, "Output",ExpressionUUID->"43ecb4a3-b859-4e8c-89cd-619503ff9290"]
}, Open ]],
Cell[231769, 5215, 134, 1, 30, "Input",ExpressionUUID->"f56d09fa-8cde-4088-b9e8-c1fe843e0d8d"],
Cell[CellGroupData[{
Cell[231928, 5220, 105, 0, 45, "Subsubsection",ExpressionUUID->"e7d641d2-d2e4-4ff2-a632-2191ba4b3686"],
Cell[232036, 5222, 515, 16, 70, "Input",ExpressionUUID->"5ca87a80-cf9b-4b36-ae8b-b3d3bac561e3"],
Cell[232554, 5240, 112, 1, 30, "Input",ExpressionUUID->"c4097a39-df83-4d4a-956a-856f393f597e"]
}, Open ]],
Cell[CellGroupData[{
Cell[232703, 5246, 98, 0, 45, "Subsubsection",ExpressionUUID->"38184e23-0072-468a-9fff-70cf2a30822c"],
Cell[232804, 5248, 352, 8, 30, "Input",ExpressionUUID->"985f288a-b3a4-4e7d-9e08-f15b7d4fee82"],
Cell[233159, 5258, 112, 1, 30, "Input",ExpressionUUID->"995b6c02-e70c-4a59-b556-a186caf521e6"],
Cell[233274, 5261, 159, 3, 30, "Input",ExpressionUUID->"6dd8ee74-138b-4ca2-acf1-66b6fe00060c"]
}, Open ]],
Cell[CellGroupData[{
Cell[233470, 5269, 83, 0, 45, "Subsubsection",ExpressionUUID->"976307cc-bc63-4945-a2c7-5a9081146da6"],
Cell[233556, 5271, 433, 10, 30, "Input",ExpressionUUID->"50541120-15e8-4729-8516-de23100830e4"],
Cell[233992, 5283, 500, 15, 58, "Input",ExpressionUUID->"cd71902e-d781-4228-aed7-f641578f9e04"],
Cell[234495, 5300, 622, 19, 70, "Input",ExpressionUUID->"cf595278-c041-4740-acd5-54f75a530a1b"],
Cell[235120, 5321, 138, 3, 30, "Input",ExpressionUUID->"e7e9ab0a-35a6-4667-8626-5b8075a48b2f"],
Cell[235261, 5326, 294, 8, 44, "Input",ExpressionUUID->"ba6da336-4ecb-4a78-a9c4-268a23b56f30"]
}, Open ]],
Cell[CellGroupData[{
Cell[235592, 5339, 93, 0, 45, "Subsubsection",ExpressionUUID->"29fd82b1-bbca-44e3-9e21-c5b21b85ae0c"],
Cell[235688, 5341, 415, 11, 44, "Input",ExpressionUUID->"52b5572a-d521-4dcb-a6ab-c7e6b5f50451"],
Cell[236106, 5354, 321, 9, 44, "Input",ExpressionUUID->"2471bcd0-c826-4623-803e-e373b6949125"],
Cell[236430, 5365, 531, 16, 58, "Input",ExpressionUUID->"98c3563d-ecda-40f2-bce4-0b9a47332050"],
Cell[236964, 5383, 656, 20, 70, "Input",ExpressionUUID->"8133b234-a71d-4e9f-9e62-6a97a55dd0c3"],
Cell[237623, 5405, 138, 3, 30, "Input",ExpressionUUID->"f5028cc1-4e21-47ae-9909-9e7fc97b0046"],
Cell[237764, 5410, 193, 5, 30, "Input",ExpressionUUID->"e62d826d-7525-4922-916b-d3866d5b507e"]
}, Open ]],
Cell[CellGroupData[{
Cell[237994, 5420, 118, 0, 45, "Subsubsection",ExpressionUUID->"04ce0091-6251-4108-8c7c-38206c60788a"],
Cell[238115, 5422, 377, 11, 30, "Input",ExpressionUUID->"a70b8819-ea36-4b67-aad9-149fbf0d8a5e"],
Cell[238495, 5435, 309, 8, 44, "Input",ExpressionUUID->"7945ae7c-125d-43c9-bd85-3a231c417100"],
Cell[238807, 5445, 509, 16, 40, "Input",ExpressionUUID->"53a366e1-e9f4-4243-996c-e571d2b730f3"],
Cell[239319, 5463, 353, 10, 61, "Input",ExpressionUUID->"6fad7799-c5ee-469d-9e78-f7040c7531d3"],
Cell[239675, 5475, 407, 12, 47, "Input",ExpressionUUID->"a47f2326-687d-4444-a496-bc621422adc2"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[240131, 5493, 102, 0, 38, "Subsection",ExpressionUUID->"2ec93757-9eb3-4688-8a59-4a6af439693b"],
Cell[CellGroupData[{
Cell[240258, 5497, 232, 6, 44, "Input",ExpressionUUID->"c9a68536-59e3-462c-a882-6fe2ffb316dc"],
Cell[240493, 5505, 1694, 41, 55, "Output",ExpressionUUID->"8a3e9c6b-792b-4ead-bf29-a267de5d530a"]
}, Open ]],
Cell[CellGroupData[{
Cell[242224, 5551, 158, 4, 44, "Input",ExpressionUUID->"d62929a9-d8f7-4672-9c56-d9df14f8d291"],
Cell[242385, 5557, 150, 3, 48, "Output",ExpressionUUID->"be5db51b-d3ab-44ad-86cc-e068427cee36"]
}, Open ]],
Cell[CellGroupData[{
Cell[242572, 5565, 430, 14, 66, "Input",ExpressionUUID->"fb7b88fe-6d27-497f-9ce6-6fd9b88abc11"],
Cell[243005, 5581, 150, 3, 48, "Output",ExpressionUUID->"3dea003d-7d14-4cd0-9427-e8795b9a0b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell[243192, 5589, 105, 0, 45, "Subsubsection",ExpressionUUID->"9362d5c0-4b85-47eb-9f3f-9d026fefc09c"],
Cell[CellGroupData[{
Cell[243322, 5593, 547, 17, 72, "Input",ExpressionUUID->"a6fe919d-d3c3-441c-9d64-69fc1f8b6b9d"],
Cell[243872, 5612, 1694, 41, 55, "Output",ExpressionUUID->"26a0fb24-bdaa-45c2-88a7-0dd59f5bcea3"]
}, Open ]],
Cell[CellGroupData[{
Cell[245603, 5658, 161, 4, 44, "Input",ExpressionUUID->"5067710a-19cb-4c11-9386-434ecb7681b6"],
Cell[245767, 5664, 150, 3, 48, "Output",ExpressionUUID->"2e974a37-9e2c-4ede-8370-e1e51f7fef2c"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[245978, 5674, 86, 0, 38, "Subsection",ExpressionUUID->"297887c8-4409-43b7-b902-a56f4bd0b08d"],
Cell[CellGroupData[{
Cell[246089, 5678, 222, 5, 30, "Input",ExpressionUUID->"c7657c97-7b54-411f-9d2c-5aa471125503"],
Cell[246314, 5685, 164, 3, 34, "Output",ExpressionUUID->"9f6c7b79-cbfe-4581-8a1b-b0d661952234"]
}, Open ]],
Cell[CellGroupData[{
Cell[246515, 5693, 230, 7, 30, "Input",ExpressionUUID->"89fae154-b827-4fe0-8c4e-38c733e28a0a"],
Cell[246748, 5702, 183, 5, 34, "Output",ExpressionUUID->"63895ebc-14f9-4208-8b0c-ad989e571d10"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[246980, 5713, 88, 0, 38, "Subsection",ExpressionUUID->"a0548945-4d6f-434b-a9a3-46befce92396"],
Cell[CellGroupData[{
Cell[247093, 5717, 195, 4, 30, "Input",ExpressionUUID->"1f74bb24-0cd1-4743-9b6f-a1efa37d242d"],
Cell[247291, 5723, 170, 5, 35, "Output",ExpressionUUID->"f4d8770a-6324-4016-b68e-77f8b1cc1c28"]
}, Open ]],
Cell[CellGroupData[{
Cell[247498, 5733, 213, 6, 30, "Input",ExpressionUUID->"68ed03df-6799-4d00-a335-a09b329d9fbb"],
Cell[247714, 5741, 229, 7, 38, "Output",ExpressionUUID->"a98afb4b-b8d9-49f2-843e-def6c836340e"]
}, Open ]],
Cell[CellGroupData[{
Cell[247980, 5753, 327, 9, 30, "Input",ExpressionUUID->"285972fd-cd01-4255-8323-3f28e92bcda3"],
Cell[248310, 5764, 230, 7, 38, "Output",ExpressionUUID->"ba56bece-f9a5-4eb8-980f-614e6958d901"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[248589, 5777, 94, 0, 38, "Subsection",ExpressionUUID->"71e95632-71fc-4b5f-af70-e71baacb6d48"],
Cell[CellGroupData[{
Cell[248708, 5781, 201, 4, 30, "Input",ExpressionUUID->"a49fda24-632c-47e2-acd3-b91ba48cd0eb"],
Cell[248912, 5787, 2081, 48, 182, "Output",ExpressionUUID->"9fa1cdd5-f06e-4688-bbf0-e957ea7a8f5b"]
}, Open ]],
Cell[CellGroupData[{
Cell[251030, 5840, 88, 0, 45, "Subsubsection",ExpressionUUID->"a38e6152-5dc2-4148-b5bf-bdee38909557"],
Cell[CellGroupData[{
Cell[251143, 5844, 349, 9, 30, "Input",ExpressionUUID->"7e60831c-1ad1-4ecf-b14a-5dd92f135e76"],
Cell[CellGroupData[{
Cell[251517, 5857, 172, 3, 24, "Print",ExpressionUUID->"0f05d90e-18d4-42c9-895e-b8da8614ba47"],
Cell[251692, 5862, 200, 4, 24, "Print",ExpressionUUID->"d391dfc1-2513-4ad5-9cb7-fac8a5e47af6"],
Cell[251895, 5868, 189, 4, 24, "Print",ExpressionUUID->"3ac27770-858a-41f7-9a3e-54a1051ccb14"],
Cell[252087, 5874, 172, 3, 24, "Print",ExpressionUUID->"2b8b4ecd-0785-469d-8ff7-b256821684ac"],
Cell[252262, 5879, 174, 3, 24, "Print",ExpressionUUID->"6ae3255c-037b-4021-942f-83177704fbf5"],
Cell[252439, 5884, 204, 4, 24, "Print",ExpressionUUID->"a0525fd7-cafb-404f-a2d2-358d1f376b21"],
Cell[252646, 5890, 177, 3, 24, "Print",ExpressionUUID->"ab252536-24d4-4f82-9078-e081ce9fa195"],
Cell[252826, 5895, 205, 4, 24, "Print",ExpressionUUID->"8b6c35a8-b461-4588-9ea4-558c129858c3"]
}, Open ]],
Cell[253046, 5902, 183, 5, 34, "Output",ExpressionUUID->"af7a0518-79d8-4053-bc8e-1767f9414eda"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[253290, 5914, 83, 0, 38, "Subsection",ExpressionUUID->"d15e4e80-8ba5-46ff-8cef-b8293bbdf677"],
Cell[CellGroupData[{
Cell[253398, 5918, 190, 4, 30, "Input",ExpressionUUID->"1ac987c3-1dad-4ce6-9683-ea0acae938c6"],
Cell[253591, 5924, 1475, 37, 41, "Output",ExpressionUUID->"6d824cd1-de83-4c55-a763-743af1d65ca7"]
}, Open ]],
Cell[CellGroupData[{
Cell[255103, 5966, 177, 4, 30, "Input",ExpressionUUID->"a142dd49-5646-4783-ba54-60254d03125b"],
Cell[255283, 5972, 1475, 37, 41, "Output",ExpressionUUID->"dad10d8c-d4d8-4743-a0a9-4eb375035e28"]
}, Open ]],
Cell[CellGroupData[{
Cell[256795, 6014, 265, 7, 30, "Input",ExpressionUUID->"108519e2-21e6-4fea-b60d-e46084dea4f7"],
Cell[257063, 6023, 1475, 37, 41, "Output",ExpressionUUID->"c67ed878-8fde-489e-b001-7d81d23ef49d"]
}, Open ]],
Cell[CellGroupData[{
Cell[258575, 6065, 146, 3, 30, "Input",ExpressionUUID->"c0c6a145-cc78-4032-9d8a-d4cc13def35d"],
Cell[258724, 6070, 1475, 37, 41, "Output",ExpressionUUID->"7782eaf7-2d7a-446a-8e70-2dab85fac3c1"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[260260, 6114, 97, 0, 67, "Section",ExpressionUUID->"fe49d574-16bb-4638-bbcd-a69874c61c8b"],
Cell[260360, 6116, 680, 19, 52, "Input",ExpressionUUID->"42848649-95f7-4bac-831b-6d45d5e0c0e1"],
Cell[CellGroupData[{
Cell[261065, 6139, 80, 0, 54, "Subsection",ExpressionUUID->"ea65f44f-5f7e-41d0-aa20-768cd3d0c930"],
Cell[261148, 6141, 256, 5, 30, "Input",ExpressionUUID->"fb176fb3-1c77-47a5-a612-85ac11687604"]
}, Open ]]
}, Closed]]
}, Open ]]
}
]
*)