(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 286179, 6572] NotebookOptionsPosition[ 261444, 6151] NotebookOutlinePosition[ 261888, 6168] CellTagsIndexPosition[ 261845, 6165] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Gyroelongated Square Bicupola", "Title",ExpressionUUID->"bebbcba6-4d33-403d-85bd-1522d079e6c6"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"8e392c9b-7a17-4c1b-b617-0ae4f5a4f844"], Cell["\<\ Eric W. Weisstein September 13, 2023\ \>", "Text",ExpressionUUID->"6115558e-c9f2-4e22-9496-a3359153a31a"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/\ GyroelongatedSquareBicupola.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/\ GyroelongatedSquareBicupola.nb"], None}], "." }], "Text",ExpressionUUID->"8b296164-cf90-419b-8329-8679bff0bb47"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/GyroelongatedSquareBicupola.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/GyroelongatedSquareBicupola.html"], None}], "." }], "Text",ExpressionUUID->"dd88aca0-1949-4a2e-9977-b3098de66d57"], Cell["\<\ \[Copyright]2023 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"fbdbf9bb-7b02-4f6a-9378-199f9c3015ae"] }, Open ]], Cell[CellGroupData[{ Cell["Solid", "Section",ExpressionUUID->"61bf3932-5a3f-4999-9cc3-259f1988049b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[75]:=",ExpressionUUID->"2116699a-8443-4a22-8a5b-fb6fd15651ee"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel->"Out[75]=",ExpressionUUID->"2a2fa0d9-43e9-4bf3-9511-f805ecdc036e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]], "Input", CellLabel->"In[76]:=",ExpressionUUID->"be6bf588-3b8a-4eab-9e23-300a9680fcfa"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, { 1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, -0.4301477849314858}, { 0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, { 19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], ImageSize->{360., 360.}, ImageSizeRaw->Automatic, ViewAngle->0.4406947829191935, ViewPoint->{2.01799204443928, -2.557999641733777, 0.9134253891093921}, ViewVertical->{0.3003544565614135, -0.16419816432994871`, 0.9395882945494656}]], "Output", CellLabel->"Out[76]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnXeYHEd63kezGQssgA3A7iItdpFzzmGRM0CAJEiAAJETSYAgAgGCAct0 YADzkcdwgTweL5HHfEG8k3C2LOlsxZNlnc46P7L0WNZZsmRZ6ZEtS+up6uru +np+Vd0NPPrHPjzPDHZ6Zqre9/u+963q6jCb9p05euj4vjPHDuzrWHNq38mj xw6c7lh956nSpoqfKxSKv60eHYXK0t+9hQI//U6h8LMN/x9s+F39Z1X30aNH ew4fPqweV44cOaL+L/yD9bnf1H9WJj9X7FUfrAi/or9WVK8KFfrv8N/fWU39 wNdUpd2U+khV8Ole01r41t9bDf7rXA3W609X9NrwiupNG+P3cjU5IGhS/am5 6yajdv/WavdbudodFLVRGf31N1Zr7+dqbWiAUm1WL4PvBtvCb+pX/9Pq4Wvl 5RF91tFNJ3RTBQH6K6ubN/WfNdRNb9hdUFAVUZvq3xjIZTX09T+svj53lX1N hHZr5Tb9+b+0+vrMVfY1Hfqqg77+wurruavsa6560qXVFzL351YPT15lD4uh Xerrz6y+Hr3KvlYE7YqK6Bf3FZnSf7P6uniVfa2DvhqiaNo93HOVPWwOehB1 MCDq4adWD6f1nw4rqLI1Guq0sD1qqDH660+tJo/7miyT/W5IaNzuf7XaPZKr 3QPQblPU7p9Y7e7L1e4xSF5z1O5/sdq9JVe7JyBlg4JtwmX/2Orhxlw9nIEe BsO2P7J62JKrhwtRHNqg3f9stbsuV7s9kEurh96wMv/Q6mFFrh4+BVkdAr3+ J6uHxbl6uAw90Mj6E6uHubl6eA5iPjzuIbKwP7B6mJ6rh89E+e2I/rJbm5ir tc8B+7jd/2i1OzpXu29CuyOjdn9stTsiV7tfgwx2Ru3+vtVuW65234W8jYra /ZHVblOudj+GdkdH7f6e1W6/XO1+ErUxNuhB+NPvWu3W5Gr3+5C3scDh31s9 /FyuHn4FMjgOejA7Ov87V+O/Do2Pl41rWj8M3vrbXI3/EFBOhMZ/O2j8L3M1 /qMooVMgBcEeXEGP8EW1VX8yaEW1F05EijAP+QNoj/r4jeDjwchT7ZruFF3d /BE0OTXeFjnfr9uo8s+q/hQyPC2KnWn8P1xl4/8dMjwjavzXgg/91lU2/tfQ +Myo8X8XfOjfXmXj/xA1NDv6K2ir8EtX2eQ/Q0LjxoOFgMIvXGXj2jiqIJdz gm3CzgLLKHz7WvqilYO5kJFfDt76QD/nmpLrbhqhyfmw7d8E3bzt66bMI+Jx TadgoWxXgwiSXXgrf7sjIN3UQ7BgU/hC/h5GQw+0e/n9oIdX8vcwEZK8BHq4 Erz1Qv4epkEuu+MeIpf7xaCHp/L3MAd6WBbl3LR7KX+7i6I2VkR/BeotPJi/ teUQ1bjdYAWucG/+dtdCBldG7X432HA2f7ubod1VUbufBBvuzN/u9ZCtNcE2 YWHfCXo4lr+HHRHKddBX4ImFA/nb3QMZpB6CVc/C7vw9HIIe1sse9PZvBj3c lL+H2yGrG6CHYBZe2Jq/h5MQkc3A68Ogh41RsrLNzXQftCawBfr4wCYYNR9+ RDd1X9T/1riByJSCJWeTgyo7QtHH4lYSnW+NWhat1AjUhWCNP/qibu0CJGlb 1Np7dmuyy6KMS4zvHmjx+qjFd0WL4kOJFfMY492QghujFr8RfJvUkViw1tt1 i2ejb98U/fWOux1rMTpaSbHWBmVg4hbfFi2KD/XRHwomReU1dyd842YZHf3q a6IDEcx6SSNOz0n48A7g/NXgrbXwVoOEEofjOHz4Ftj2FXfb/V2474AP74q3 RXn5smhbhHCgC/dtOhtqO/nul0SLInCJCWVcYMegHWo7WIkJByVBrgXIWau8 EsjeuO3IUL5ota3Jteq/XEV3AJrdF33XbizBoVWCj1N2AFgdiFp8Q7Qoum0P tpUnKsZzKPrr9eA7q6GzoS5kVrgiGnGLX7Ba1BtGuPDcCu0cjr72eYFMfGiE C9luCMeRqMXPiRbFh0a6MO6EwByTH9avXgvaWQUf75Lb4jIn47gNtr1qta2J jIk/1GtG9aDF2D1J8K8IjCKiiZW2mP+N8OFE23r7y6Jt3wpYjPYG+PBxaDs4 WhnMlXmNqhz3NmibBoYXrbZ14Ca70F4H3d8FLX5aoBVvTXGh3Rx1b42JkRW9 IFoUlKZKUHFtbYLuT0e9mBZXAKUZ8TZpnBugxTNRi8+LFsWHZukPuYyTHCye YDznbna2BK+j9atmW8H6dx+QPBd18KzogJZQRLbMglOPQd/b3jJK/a92utU2 3fEF6PB81OEzQePL4UOJxRTN6Pt6W7+ow5lDxve2NzT3bllye++x65/W/8+e sAaB3B11ekFS0a+eEkBEaBcC8+/Foe0xQNSZFnO2lqJmASpUmucEsOKV8syc hK4peJfdSBdByD4x6HV+SsgU0gpAWquei+plCa4VP/UoKqDGi0RR3Av4nhT4 aIWmx+wradzfsvCFkawy+NRrlVaFr2+Er6jgFSNcdIg4UeW6oyeCt5YB5GDV BTT5PoCrAXADXOAOQm8PALjHBTiR1IQ2dFJtXEoDClEt4GqWuEqZNRntNo+9 mrlq80Ho+pIb1co4ldH2dyBadQbVpvGLdVUpVO36uUaXntpGat0FfRLETwmI 5as+icB9DSDWA8ThFkSXodwMcB6Kt0UDVnCSTLh4KEphLUTxrRjilRBiP4DY md1aaPh/WD3pzEt8gk5iB1ZTetMKoaq9EqZCg8GnXissCtmYNEOh02YejVA9 4ka1AaL2BUjsAEA1waXUxHqVfvWpCM3DAo0I5Eb5Rf3lzwKaRkAzJU2f8X7D Y9FfQY0VlgLgLfG2yGBfNtsK1lDVDAPAzAyqpEEnBvagAAaLSuCwL1iRCoen FkA3N4Mgl0B2Hjft22P9RTfObTKouuCfh2QOBogLswtyHiB9AvIZDBUhsfJF q4QIno6RRtbRBsPC0jRpzoIOL8O2+934tkMkL1uRDK2jHfCtcIk0Pv77tGxe 079PoPGteOntj0FehwKaNWkinQQdEr573fgSO786io8CvmEwEGzKINxx0Oez sC1YcA0P1qUukJkRubtgecsIgLg1g3pHBW0JTTwHEM+7IeolFHKZ+6xQhi7T AThvzC7hYdD/CzHcaPQ/J+DSIp6QyL0W0jCinYB0R5qE2wGf3hnX8vGg2mcQ 2FI5B6hGwXi22yXc+Bz5l6K/gqX45E6LfpVY7dOROWthCOe8owHDPheGRiAb oznrRnMIInIXRGQsDAqH0szDLICLso/P/DsjUJWvDSZidAJQjQdUt2WwjD4A 7OUI2Gk3sKMQLrMqHrRosqdxEboT2VVYAel6NQJ5KvjQQvhQYmVRbw+Bm8jp 6E0CfKdi7VUntRei0/2H00B78nHSjclaSYwWMg9CRqfAIHU3+EHvpk2brnR1 dRUVqNegwzsFFpHEsJLsJO4FLNMAywWTvyP7TvZuXrEvrLBYiS8DlhNuLHfK j+u43JrIlUIx3YNFLTmYbWmKfFF2p2EEix+FBQD8FERqJ0RqBrh4gK6i9+jN j+hoBapM1+bzAPEON8TTEMCbAOKsjBDrMwznNLu4TUAUb4Xubkfx+hhiNJ2d 44JY7D26+8KA7M7xJIA4JvAJ50scN9ah3WqFMJzOzoURKQyhCp8Ko3rVlDZ+ Px7ji+YSZkJDp5ndE2+LZmebIMXzPfgsjZR2cByjaLxP7EGjZzE0EVsDkBZm hDQkTbjxksYRAU3kOLE0qGMbHu8rWNPYxWD894AWRmaQa08E7LAAJirMLAsK BaywwhXOW5e4gGkFjMkgzfsjOMHMJtwdFSnsgTh1Q/a6PXGyC358dmnGhwcO uvE9BOFaBPiWw6BA+CbHgtQf7gnR3CM70q/2C1yivh6GuC2wcIWD1QoPLrvq p5ptKm4hLDossE9AEpUV7kjay+7h2bd2qFYBpPNQ8tPNNvW54R2Tu12Q9gbd 08m3waIRGMQ0wLUaPJ+kGOJSn1m4bKeurMQRCt3XHjeuxyF7+qgizV2duLQS Z5iCV8VeQqMePQ5AtwpAopyejHMXbZ+UKCcVo3WeGNllHsSoKkJ194Mfh8jw bLBdApooq8SCkI7VeEjfBg80u9IJmnqoFu8HaMHZQHga7TMQtdEAbRMMPW5o 1VqEpYqPoJnIWeiisXqnG92zELiuRE4Vrs2AjvQ406BT3w2RJdFpO5WYRDDD RU47YiMgYteB3Z+Pan6W5QwGRaGon/W26F989uIOAUnU1wsyTDp8QwHSNhek ROnPtOxhx75LAlzp9ZWw3zhewaph8ti6fvVSvC3y1NYYXDRfvSEnOKv4S6+C 51CfEtxNFji9QZ/QQp7alKgtNU+90YPLrnzCVWlwhd4vcW0XQRNF9ooMpC78 RsjoTTAQnYPCD8vNkmXJP8rLzehTDOE3CJii8F6TH9fww/MUbZg7MsKcDaqo hNwmDgzrV8E+EC7Ifw6iGZ6qWbBmsre4YGrJzgFwVRnBbbPAWefPycjVWpEL 57C3wJBAqpgNkq2GBNMh9a0icqIOX5cf13yqIMG7PTBtkcwGkVRDDC8CzOsE TFGHwXmSNcJjwsSGEPdcA8QagNgD4QoO1AaXsCUq4K3442qlSUPaB8MWyWIO qLcWkkuQNlmQdOVZR82j2Ox3AdGFPw8KvwaGA+usg2hw3ygiIpB9EYAc9ETE Lve5AKkWkvRgRFsCEdXzevCh4A172noQrN+HxhZfHVh/jCY4MG+fNBcVyutW WMI56xEPELt250Lt9oFCiYGst4BYp+HKrByD7u+GOp3n6d7OykNRb+tEHER5 0JkBt7vWcx1AbMHUe4GsFUBwkAsToiDc4V5YLglmPnTfF9IQdx+s9uB9cl6F OJzwxMEuzPkgE4qD2RUXw/4qC1I8a0oAuRNMlQpzPiikrxuICMBKEZvyg1KJ eeRdOSHZxdoPREuQVghIolpeTFSLmkKeAkhUtgs8kGyjfSSGFA13wQkneDHm pyFxZ1yQdAEvBCANkK5HISfdAgjuOtlATiogRYWjwpzRqFxGvatgKQBqoeks FPcCUFn/jCCXukGG+5wFa2J4VIIsKoxaVcXekY3tlb3LRs8sAZ82brIGvnPn id7Jk+dqqQcLsBXRebcK8p1AZiEotT9YhkUmGmOXCDKiGsPd+4I1pbw1IlMJ ZCoUmWLv/rmbansfWne4NP0ubex99vxjvXuvu0VRK/Z+/PFPir2XLr1Ves/Q jA5cKZ53gNh89OxcxWvmhlTiRHX9yjp5Jyqj7ekZ0qQGalJVEanvv/7NkFhp IhoyKypixYjREdDqInC0AV5GiwUjUXOXgdFmL6M4TUM0I/1aMykxKn1EPQfh LnFSj9L0SLALDgrYIjvgYWkbwUAoy5jlIjfLJy2W4UC6MmMxjjIsS39qnQX8 gmeTP82yn36uVDRtHZIMd0d2t9jD0s7lpYjlQsESz6Ozc7koY3VOMSzV91Rl 2ixVtSo2it/ANA3uBItZBH7Z6GUZrMaHl5+UL0vTQdEMFTvPsLQ0WFJkwFLl VuVOsWx2VqyiUHpsB6dZDE7TCMN6zHK+YCkq1pR1kOSykzEylO0yEGc1lG2b fq7R1FU+7ZyGY+C2nGztGUOYLnuCN9fN2z6hLtwH6cxYw+uBci340dDsSt0A zrQE/LcJqvkxKN45gnn5yd6Jum7PWNc3gEfVQbI70tS7NnKmpeBMzRlZBgt2 hcnw1kPAcmDGkr4V1EssR6WpdyV41BLg2wLjTYKvLtxZgq+o5wcT9RxdBZKh no8A33qo53EZJNztoWzbcguk+HGgPNNN+SKkOEMN3wXq7QvZnZRdvQvAt5aC bxHpJ4DZdEEazgyovBKSNo8Exwug0wbI6NQ0nc4BX+oGZoOggolZMIMPj1oK xZp1W81MVaJi8DDMFhogVzPTlDjDw8P210GQIevsoGiHZKrgISjaPNRDMXgI FNYfeMzLoLApkXUuAysZ7CKgJwIe2MFxkcpuHf7+TfpRKp8HQS0DoZIWetSi K2k8GEM3EGiFmUxMIBjQ8M7OtjL2T5nXu2zEaIW6Bwg0QuiXunaNRoO4fcDt ScnlCPjk3MAvgoabIfLL02p/pIeAbcltUDoxgUmCAJROVVQ6Dy1eH5IoXITK b4bwr8lQ+UNBxMvBjPxEJqYSiTKhiKj/S+ALDwCRFiCyIU0IgyP9rgADagcj Dfed7altcHJFYYKzniQL9dAMQQ2Doag2u9TQBDJeDmpohxw8BWDHuXmYI7V2 WZXCqJ4rQnfSbGiwa4XMbEsTSv+M3IZk5DZWcINKq7BzFHEz0hHcCtYAGHKz d5dvyiCfevABojcUSjBBT/MYc+307gFRtcN+8s40UVWBNawAjxsKqaPLs4IT hJJ3kXWWZQVwOw9SGwJleatLaqXPqTQZSoVV4HRE5xnIR1cqHZGqkI7xPk3k HKhsGDjHPlTZzJkzlePZO0U2j2Ew6BOPTsEjteQqDY9CMA3TDM4Cj+GQlsNG URcuPNK7Zs1W786ObeDDYBpgnf8ezSBHuqmEpyXbFVYFxncW1OOmUquFb9Kk H0410cGR4VBqmpceVA2bxA1tnImpAr2cAb10QIEd0s8VNptSew4N0eHiEV4m HdfO5DQwGQl5OWiYvPHGFV1m6lWftDXsmeBqHeDYMaMRglFqpVUDo1Mgmi7I zYEA/VNPvTHAGpCsGhPymQZOQMl5LqIyXFDB23wQFdvHTsGI2gXJOWCSoxKj EqReNaUNQxOBUYeXUXDpKN5tncqtBhztJNjAqIyMBruEMxasbSSUmbkqV8xN h7g5UZZqwdruBAmNgYLbD2YwJE1CXWAKIyFLzwOBdsEtVUy1IKYTIKaxkK99 YA8jM8hqBNDrzEivTdAjgYlyJHrHgd54SN1eoDc6TWDt4H5dMHmgi+KCU3LD X6BKLcs6DzdbauMhdXsjH5zgEthgsIpOmDu8AEwGXx0T2wbvAIFNcDFJmMbk NIE1AbcuqMBPg4paBDcSmKjAPmCItwG3SVCBe8A8ZmQQWH/wxlEZ6TULengD LTt19UDvGAhsMqSO6M1JE1gfMI/R4PsWt2hKG5xbHl5ckVqW9eD7x2B0DrnZ +7u3gnksdEmt2sPJzpc+sUmPyulMRBHWg1UcBauYCru2uyOr6E6TVRF4jPHy aBQ8RCFStfUFHkdATNOg2naDUaz0H0Kxrp6JeNg1po8H6Rt3VyoylcHlDPbp z8FPq0UEU+XUF5zwMMhpBrjFLiC41iIYOkUpE2MhKReiUqpSZHQy9KXomlZA UNOSaTIER2WsxH7gFweB4EzI4C7wi7Vm90oRnLNgqX5MmrlQpa5ALI9ByjRL zSpgrt4dABXpoUq5bPBQtUVHVG8B+1hr9pJDqj/+6T/1Hj9zsffmI3f3Pvzq +7qfktuPgdnGjoy5HZHKOlWiDWCaB0Cis6GCdwLrYN29WrC2mBd73/uNPy99 ReU8tJxRMEtZlzHvdDqRjABpWJR4A5jUfojAHMj7zshs1xreSrVvvvuLEW/1 d4lsheGtkh/OM2mIn58x83SHouC24cmbIOtXRtpBbQfL98h7H0h7HmR+B3jX arPNikDpVfCsvlsKgA5CWAJKAyoUpbRjKMZlLIFNKaHQAxfNF/qDee+D+cI8 SPwO8LZVEIBKEwAlBUU4oB4HwOggCkDB+teasRZ2pQSAXUBoYAB43x7wvvkZ Q7HSbFOfUcpXQagyoQg9UAWhCmRBu5a1GWvhjijhjSIAZAJCDBSAW8EEFoIY bgIbpABUQwCqQQxWANR1T3o67Ex+mE07wyb5nVAXNAQMhCFgNxjBIkj+TZEB EuMaw9iYoOZaA9XfGVd/Tzgb0z9QRzdSsdnZ2hYFPRDMbRdwWgL53A7mthzY 1YG51VoFHY5vtGD3FNSlTBtpVpSsj6Kt2SWQNqK4zGyzRu7S3nC5fdUlNKtK lijSz6RKiuKt8CYPdmU2gkPfAqpc6qFo21I3UKwHVfaBGu2AeRrdVtMYz0i3 +EShNoHx7ACKy6BQbwDjIYp9gWJfKNThMBFLo2grUJQnEbsZFLgccucjZo+u /UCBfaE86VjT4xH6JpExoTsqymawy5th2hASs5cZbpA75wk6DUCnX6IUXXQe A/SyFEltohSbwVBuAkNZCasO14OhLAGK/cFQ+sM+wTCYD11yU+xwq00UJVHc DmpbBUV5PRjKYhgWBoDaBkBR0rH2NIq6XmkMbwGnvBHUtgZsZBsQWwTEBgKx gVCeRIx+lVvmjnQnynMQGMr1QHEt5G4rGApRbAIFNkJ5DoHytC4xjGqwSVAk BYry9FG0FeikqK2FiDUDsSaYfLfDEOAhNgLeIs8cDJ65DXS3HsrzOrCWBTDK tUB5NlvlWQjWW/BMMrpi1aZo604U5WAwlK1AbANkjIjNB2KDgNggKMo2mKHE 10s3i4yR2kQpErHrQG2bIGNbwFDmAbHBsHswGIqyDdRGv9cgi1KoLbyFoV2U reCZ18FAvglytxkMJcydPd61gu4GQ1G2QlF6KA53606UZxsYymYwlM0ZKc4D im1AsQ3Kk84k74FUSYqphUoUN4ECr4NC3RR5JhFrB921Q3kOhvK8mI8YlWc7 eOZGUOBWyN0msJY5MCwMAYpDYEmCLmOgm/Y0C4qkQFGe7WAyG4Di9ZC7jWAy s4HiUDCZobB/RxTvd1OkW7RTefoo2gq8HrJIFGcBxeGgwGFQqHRZWHy3tBZB LLU8h4B70oWMNzjPaZfWQsRGALHhUJ7NMGuhGw42p1IU5TkUrGUtUNwO5bk+ spaQmD3ydYDuRkBR0oWLtOIniZHuRFESsTWgu5sgd+vBWmYAxZFAcSQsOjTB rOWCm2LipzKd5TkM3HMNDO4hRXsvnShOB4qdYC2dsKfXBLqjXx+WFFPLcxhY y2qwlh2wv74OrCWkaI+BXaDATihUuir+PKSqJZWiKFSiuAoUuBMKdS2YDFEc BUsSo6BQ6fYG51IpigSHEbELdTj46ErQ4i4wmTVAcRpQHA1aHA2FSvepoB+1 NhSHuLUoCnUE2M1yoLgbsrgm8tFpMECMAWJjYEmCbjMS/2bjIEEntSh9dGzd OekkrGUKEBsL1jIOJtV0R5izwKPFTZGKsgPck27MsAeKcjVYy2SgOB6sZRwU ZX8YIM6kUiTdiaLsAGvpBop7IYtEcRJQnADWMh7KswHmL2eAh6FIP79DhUoU l4Lu9kMWV4K1hBTtMXAiKHAiFGo/KNTTqRRTC3UkuOdSGOb3QxZXRtZCxCYB sUkwqSZid0GCBqUSE+XZCSazGEzmgItYwmQmAMXJYDKTYXGiHwwLJ90U29zl mUpxESjwEJTnCg9Fe+SbAiYzBcqTbvGnKeoBYrCbGBVlF7jnQtDdYcjdCrCW 8UBsKljLVChPIka/zi1zl1qeXWAtC4DiUcjdMrAWojgNFDgN9v7qoTxP/MtS tBV4FLJIFMfBADEdKE6H6TXdEtRDsTVjoY4C95wPCjzmoqjdk4jNAGuZCeVZ B8Tox6DTiYncjQZrmQvEbofy7AZrGQMUZ4G1zITypNva3g48BguKqeVJFOeA Au+A3HWDyYwGirPBZGZBedbC/CUnxXBPyi7PMeCjc2BwDyna+/BEcRSMgXNA gXNg74/uZ32bm+LgjIU6BkxmNpjMCdiHXwImQxTnAsW5MNEmivr8az0Gtl47 sVmgwDuhPJdE1kJ05oPu5kJR1sCwcBQqT2YstSjHgmfOBN3dBdayGKylC0Y+ ojgfipLupX91FEXuxoG1TAeKpyB3RLETKC4Aa1kARUkUg6qTA4ShOChjefoo 2rrzUbStZSRQXAi6WwiFSr8qcTgfRSrU8eCe00CBZ6BQF4K1jIQBYhFQXAyF Sr82cgh4tAqKqYU6HkxmKlA8C1kkih1AcQlocTEUKlE8mEpRJDgrxSmgxXOQ xQWRjxKxpUBsCSxOVMD8Rf+Grh4WzAW+LRmLcgK45xTQ3TnI2AKwluFArBus pducbW3t8+mHmbEczMFHpGci+Mgk4HPew8f2kWEw4C0DkS0zfKy5tH6Y6jsA AmoVzFK1RcwmgrYuQOHNB2ZDgdlyYLbcMLMWIGxm+1OZ4U9r2jU4CYxxAkjq XsjZPHANYrYSxLVCP1eKGowZCdiGUXNGVU0CkxgPjO6HXM2NTCKsPXsMIx4r DY+w9kxm9l0VD1FzPh62mu6HzMwFdxgCjFZBza0yjMKaK7FSjPYA7DbBSJQh 1dpk8LtxoKIHMjJqB0argdEaa40rTMatqXRSpTMFTGEM0OmBQpsDptAG9r0G lg7WxgNuT4hvt3rSnm3uodGUscqIxGhQy4OQk9mgfyKxDnSzJiZxRZBI1FGb mw7lZCrY2WgQTUjH3ksmOq1AZ72HTilHPdnppCpmKnjAKKDzMOwRz4q8jEhs AJ2slsvd3ZZOhBgkCdKJKDEi0QU6eQRKbBbIfhAMMRs9dIzs0+g0ZiyxaeBi naCYT4HsZ4LsW4DOJpD9Kis7U2bO7rXoCMzt+ehMBwPoADqXIDtEpxnobHEO nMFuQ4nOlWx0SDGi2Hx0bMUQnRlgAGF27DFmC8ypQzqq38df/XxMR5vyEEFC VN9ZyMkMcLERoJjHocSmR7In6NeBTlZYA74qrNKjm9APzFhRM0DvwwH9E5CC 6aD3JuCx1cNDCaaUAsEjUTntFiNNkYZG4jEMlHEZsjANeDSCDW8DoS9P5OPb v/E7qu09KTwSb1FdzQTrGgbiuAyZmQZaHwiMbgCtL0tkxghkD8hBMkpVyiyQ +xBg9BQwmgpyJ0Y3gtxDRqpflZ90RgPc6hFVR4zaQT3PQNVNAUYDgNF2UE+w KFAlqm7XkWM9hQL78hCLlpYQWcFsMLI2kNCzkJ4pkZGFFOwh5SYPhbDMFAVj AqkUMqhnNvhBK5B5HjIzGfygAWjdDH6w1FoECDNjUYt9eqjgQ9oRlebjY2vn eUjOZHCDfsBnp3NdTabJeByanElTf7eAxIk+s8HkBoOAXshJyx5+doIlhLRC S7BsIZWWU0BzwQ1agMyLUHMTwQ2IzC3OdetgSa3kAklC6WkiNYnqI2bNoKaX IE0TI2sgPrs8fJI1ZzREvi35kJpE2c0Fq2sGNYV87D3PieAO9eDbu8EdFiV2 C0qsCkX9XBGZn/q3G+RjDKMB3iIDnAeG0QQUX4a90QlAsQ9Q3AOGER4nspIX USxY/9Io2ioTtUjEGkFlr0AtTgDLqANiez3H+Ch3oXWofzR4ydyR3ER5zgNX HAhyew2MZBwYCVHcB8Jb4MldGUX7pr0NoLszUJQLwEf6A7HPQu6IWC2MYvs9 xAqx3aPuaPfD5K6fW3eiPH0Ubd05KWqrJGIHwFDmQ1FWXAUxW22iFBeAUzaA 2j4PpTgWbKQaiB0CG5kHpVgBNkJrRDJjgjMV5UIwlH5A8QuQsbFgKCFFe5g7 BIYy15M7W2003kmKpDtRlESxL+juDcjiGKBYBRQPe07WoSymeaaxlr5u3YlC XQie2Rd09wZkcTRYC1E84qFYsKwlpBjukmWjmFqoi8Fa+gDFL7ooamupgsHg GChwNpRnpcta7HvSe+iIoiQ6daC7L0FRjgJrqQBit3mI2UXpJJbgITNGuhNF uRjcsxZ09xZkjCgWgeLtKac6hrmrcrsnUayHeqWiXALWUgMUvwJZ7DJ+eTjx cxyG3nGQ2yxP8sA0PcxS69PHzJbbVyB5nYaZ5Sj6YYa9E8BspidnacNBOjNR lkvAK6tBeV91MqsSzAyrwklQ2wzr0IHZOY1ogdpEvQ0XtATj01CK3WAolUDr 61CKIyN/TExOfJwKlufn5NTHLS9RhMSpAuT1NqQqOO+tMnIQM5TdlXLqflh8 1W7D8DBKLb5u8MQKkFXIyN73Ds/kU4Zh2BROeejYLuHUkv3TMESCSm0ZeEMR SHwD9q47LBLhzOIUzO2neXKSZnUyJ6QcUWUBnWqbjn4Y1bwHxTXCsDhz5rHe hy9d1vjPgFamQiqqYX7kYVHn1oqorIBFlW1roUYKH4Dmh1mj6bHjp3pf/8qH hbMeCgVL7tUgd3JmSSG1rlZYcg+hfwjRD39QO5wIqAx87wc/OgtamAJlVAPS vjr0ooxs9EYFiH6IGUOsaUzIoOCjYNcQUSB3GiEokBJEDS03NaSUoLarhxJv CX7gRe9BIbUZPslbh6vO7gZlT/akBJRNfGrhLfeYWKv5qG3qvd0zJvRObWvp feDgTb3fe+kh9X9F79IZE4u9Ohyq5ip1vpSLmceXIY2tZpKTpF1Ko0rnOZDS JE8my9zA/hWy2owluMg4WfjzsTbny+uXFHs/OXB9qS/1UtH/xx98o/Th0nOF ikSJttpYCkX40CEpqpAUFfWiCsUXoALoNJei4W/CoV/d7YlJwbKXGre9iBCM SI2OqO75ieio91QlmOhUQXT6q+eiik5RbSumFQodAgijY+9L6+gUleeeA8VP hFljbb6Y1GRUyFxr1EjEpLQ7Wh6QwWnl4ggMHdWmsz7CO88bQxRl47pWPZRS rdvXc4ao/DB3UUXH1FMYn74mPqXa0SFQ8enIKSc69YrOIglvSK+mTcZp0Fwn gLnWgrnuNfqwRwQZl1Q5TU/GRdWJikt/iMv4nEKiU4XprJQqiAtZ73hPvaQN Oh3uuJwCSU11xaUR4jL9KvV0FuqGzp+oAhs+D2sm46Bu6tyWQ/GpzqinSa74 DDLxUdtKUdHxmZ9TT8ehbvpDXKojA74H3GUcVMu/UDTGu6LRBtFYnlNFByEa DRCNGnDd8564FKzBus7luvYPwlZn1E54laY1eSlluBSOoRCN9dlrQ09e6VZM fWHqUuuJhu21Yz2aAa8V5GWVUFxElYyyJuaJSV1pXzQIjRqW1IRWheZ6WSh6 gmvOAVPzefOIZUN3+6uH0NSB3d4DdjvGI6CMoanKKKAO/5y3E6JzS1Q42WS0 ARZj+niiY5vtBTDb0VA4fWA/wERHDNKe6JCghvvnvKMhOgdzWi7dV74OpjC+ 6NAdzuza6QPmmx6dVFkN8cx+x8Ps93hO/10IsqqF0PSJRqN7PQEpWK5LAaHR aGS+gLS65rqTIBpnr3LuMhN8mA4b14MPXwAfHgVyqnfvC1B8KjPKaZBrtJ4K 8Xkgp5AmQrXQ8cq+YML3ggl3eYRUZsJ6tO5MjYaoliZXNGbATPdSTu10QjQq IRr9PNGwTbfTUyVgukIqskpSVTTAFZfZEJdnrlJF7aAiOkLaD2z3PnCZTqiW erfteuIjHDm8p5qtogZXfOZBfF7OqaJGHZdqu27sw6r9I6u9H4IwEoqkb74g VGQUT71rqrsIprqv5xRPHx2Eyqg4zCxlADjqfeCo9g1/wwWovuCoeyHhOcNQ 65nZLoVIfDWbXGqTEVEB0dvUCFMKxUAIxf1goh0w+Na7Z7KCb6cIhSgWkkWV fya7HKLxgScaQaoq7J+1jH7HxzbL+8EsR3h0kI81mYEuAMVQ8S36Z6irYIb6 82blWr3u7l6kH+prikGJLTneAyD2EeB4HrETyaKzymuiKqfJ5Tonq7qIVW/v X+nHlSsfJxlGP/CWRnE45LGfi6KeAnS5iQXZq9I1Gz5CQhudhCpsQqUqVc9V SKomsuYeEOIwyFY/tycJtcls0fitu1LDjqKxCSZzRKYmQSb8ZWRFphL85aKH VsHyF1LavlRaQmmGVk/B+IeL1ieGlvqcKbiSd5aei4pVSWMhL1VVoZOUOnoQ TGOop9iAisBrqASuEVXdWWCxMSOLev1crZPT03M+ImJOPOgBtQz1lJg9RcxO wD6puARbQ9+QkUCDqa5XXnm+d9OmTREBVV2k9SEQ/oaMdtZlo49q7G4I/waY ojnRF3s/+ujtUg4cNnYf6KEdcnBVLKLsnAMW6/OwUJ+7/Hjvj3/8m+aV28Jo LawdFN7gMi7twaNCHnQ/NFFL62FO8PMZeVR7eNwN8m6DSWFDRqfq8jHCzGRl pOQcbqvz+PFpUEybp9YyMxJb7wFG6zIy6mcYqfyoPKlXfWMrrkxSOgmMWsED +oN6vIycv3cXVt1az2Cfxqg/MVIDS+lxAtQzGHLkYSSwixwlGYkc5WKkXa0p UWu2O98BPAZBZga4py9CJ5Ef9MDvYQsea3JmxvaDFo8fHINaG+TJDKiHGUXV ZzFSOdUMbEY0FyNGth+0ehjRBRuDwKlzMroISVntoaAGHwXPRWGIhwJdEtXi KbMyuejBZnSwoccopWDNg1dlBN4XdD7CA3wf6KMZqskJPOFcowQFUT65KGhh d3kGkVsBeBNEfCAI2wP8QSialTBD8cXeVvIoj8fSJdRNntjbdU+3vDMUHoLy WXENFMaavcWEvRYVhZs9FGzpXh0FUT4rYez+joeCLd0JnhFiO0i30VNIsPch 3MeI+GEopBUZKdSDiKd4REx3TxkIhTTQLWKi8AgUEq18ZaUw3UNhK8xyB0AW Gr0GOkYAF7FfDsOxE7h2n9keuJuh7gdAxBszuo+J+KMAfFke4AnpzvUYKN3L rb8n4iBdohD+THXBmqR256RgS3e+Z9q9FqQbUrB3ja6OgshCNwxeWSks8owB q0G6DWCgVPdkoIbCJaCw1ENBvVYrMwpuH5But8dAV4J0+0EhNWV0HyPix6CQ luShoEW80iNiuitwPxBxk1vEHuAi9rmAJ0S82kNhCVDo64k9KIAoPA4UFsMU IiuFdR4KC0HEfT1ZKKOgnX9ssOEJKJpFOYHb0t3oAU4/MVAP0m2CiQO5zxhB AWNfsEbdbwOFOpDudZ4xYA5Itw+UT7PbfYjCk0CBDqVmpbDNY6AzQQF9oHya QcRkoIbCZSikhXkoaPfZ7pk6028z1UHsW64KuIj9Qhh/fbG3pXuzx/mngHTr PLFPcx8j4qeAwoKcFGwR3+IR8SQQcS2IuNktYqLwNJTP/GugcKuHwngQcQ3M glpcItYGOk4AF7GfD4MXAa8F6e73AKefHq2B8skE/BkAPs8D3D54WBsJ9rDH LLsAbjUIdpBbsMIsTak8C6UyNw/whGCPkFmaQ4YdINhqT8RtwdIPIkgKIvbX QuE2yzat44XaNumX2is9WQAKwjYNheeAwhyYOPgo2II97rHNoSDYSsjCIKh7 D4XnoZDoLDeiUAPSvcsj3TbQQiXYJlEg2xwnKGAWCtao+62MFM54KAwCChVQ SIPdciYKLwCF2Tkp2Fo456HQDFooegqpTAvaQMcHGz4N5TPrGoBf8FjpQHPh jwVcP0zcWzPazziBXIR8Fgy2PuS2du/zLDk0GOSWdvXDhLsVpgke5C8C8pkZ kVdDvfd4Jsr15iI0q971QyFoy+g0BvZLUCozrgH2wx6zrAPYpkyuEraI9gwY ppyw9RThkkeQwcVblVFdm6poy2ghRomfAZzTPcNpwTr2VgVKfNyDuNKykGRY QX4E92WohmnXAPeymQUDXH3Kk6oEta0EL4JapjftbBMEQBHPvABtf3gG4qke KnbtrpK0Ab0SABIL61M9I7UNqBL087zZFgLyAkk40XgBSX00OuJyLZCeMzFS 07fFC6b1fufd5/T/dtJsOXigvQrpm+oZmAiaXV/PGkEraPee2df7dz/9V/qh /i7VEQ0+5lfohKkYdK9BLqdcA7qnrVyqz5ZQlT5XwueYWeWDKfKbF6atgafM tjC/CmCVgWkCmTaHFV5ilPFZyPVkz8hiw6yAMrRhmlyXTLo8mrSL6YH5OUj6 pGuA+aQFM0x6HUST1oJid5kowIlU5wKnh7knIXJ9ABKt7Zg6FGI2kfs8JHii ZwymyJWPbRXa9kKYfSHBtHrsgfmF4C0xpk3wwLQPARHMS4kEl+yw0ADRpLXi dJgimnlh2qr+FCR9AESTjkaR+RiYrwNMuqaTYBZBLo8mxjsll0aIJsEkVRvh vAFJHwdjYFaYjyQ8UiW9ycBU42HyCGvB+pcOU0QzL0y7Nh+GpLdANOkcDvp5 VgPzix6YBWvE+WZGmA/CwDg4D0ztkZOCDW9CqsfmBGcLpweGwzYQDp0uSfqe KGCKGLphVtsw9cNU44OQ4XYIXU50XwJ0Y2CgSUF3EQa/YRA7OlGbTMegewtS TNfYB+gqk+j0IPgABG44BI4urTiUCk0Ezg2tPHBGFvcDuhEZ0ZFwjTa+DOhG gVuH6KxDADa6eyGtnZBWuszLg+4rkNYuJ7qqMnQqHfdC4LogcE5o2komC0Ai XFkBGQWYtTI5ixkNsaJL6UmgJlZfBWidOaGdh5nLWIgVXc1+yA3ta5DGkTCI ETRTYGZpVKZxHIyvVwdNRC0vtLMwQ5kIUQtvxGLP98g4DLSve6AVrPHgY+Np NrRSc2cTo5TK5SQPqjRJGgW8DbnsyIDKlNgZSOMUKH667V46KhGrHKhOwXRj GsSK7nTnQfUOoKK7BiVRlQYj9bgL5hkzIFZ0e15dV9q5pgQbvgF5G54Biyny k5C3mRAhJ5aE/CYLVCJCOVCdgGFntgeVXU0eVO8CqmFgpR8njosrEZ+AQM2F pNGdu8kMDKT3IH1DPZBU4Nrb27WrH4cBZx5Eie7Vnw5JRCkrpNthoFkIUaKf 7TCQhOBMkb8PkIakQFKXeCoXvw0StwiilBPSB5C4dhhgCNJRGFiWQpSKroFF G8BUAUTEJg2I2esJTjNIjCXdEBv6dSPSmYnNh+atgrWy1g6u/ZGB9Hvvvxbt bx+GdC3zQIKi9kBS6KP1tKyQDkK6VprFUitdUeUcccP4CJJFNyYMYXzwmSd6 T5++UwM4AMlaZWBYkUnCEBI3MD6GBLV6YDx58Xzvjh3BiXD7IUFr9HP8m6im YA+DfKYKBCIfrTBAEIK9MDqsMwjCQJhK9SD4JqRisAeB0kx4IHEPxGB9bgTf giwMAlf70KpJc+E6IthoZKKKI0y47l7bxTTRqQh8Wqcq+OpbuyHwm+NOe0Sn CQEYzt+GqLd4ulddKwjqW7uAs9V95NqkP9P9d4K3hGs3Z+z+FhhuN8fOFLE/ avqwdSe7F+ybwas/tGpOaVF9awcMrVb3apuGcJu7+5+H7pug+w/MrCzMvYFw syf+dgAMAlHypvo+gfg3gfG8zwi2gxNvAQS3pyLAGJQhKCoDLr1hute93wA2 THk4rp608qYHPX8Xem70cA9rz3R+Q8bonwi6EdVvuH8Poj8wO4JtsDe1BeR/ ZyoCEYOBYLohglAABsFW2HNKxL5bdXCXG8EvAIIBgOA9szBgV2AoxesypiK8 F44tRQOjUhVGtQL3MSSlP1iSD9BmjzGbg/YaVHjHelsX021AamtVb/hXDJKO UblBVovKUQ+z+LnRH7grYf7OuHHqH+XVmPyI6fKFhvyIN2RM9Vk34lFexFVq W5V69xwUQj8PYlsbFuJ1KbVQMP6ku9P+NCPAOT/CGWBy4dwPke0Ho8i7iRmE elWEQzFr0otC/zN3NxGiNiHenBH6ZoBOvzqQFfrqjFOCe9zQD6RD1+/Oh+ro C979jWjcqgDAKzNOIsydI4RzTbfSEAOOy7lKAh7liXUZYGuq5Yr1ioxKvM8N PdgaZUFbRFU6kwHApP4amCzLOIsxTISnGK0GNzoP37FZfS6dVFGzr9SLNm8d vDl81HkoWV6DlLozTooecFMKbnZaFb4VPjTW9ySp4P4zFXpn6N5D+9SjoDlW 6j+DN1QWgtlb6blaJeRNUDWJZGnGSruonrSDzrSSoqNrEIq7sdCuj/6NnEoV /VLba2dM6f3MAydt1CWYgRmovyojJk9nZLI444wt+EP6k0lLXcSpqN7Wfxkm wotqYaRqUM8acKWXzj0gnJCOfW3SoozTv4fcdPp6qoxWBIhWV0ZaBzPSWpix 3h520+ovaQmbozWnGqA1LyOtLeAJRGt+xkmpuV+CMGxDq9FDixZgq4HWJi+t KrVNT6rng6Yqgda8jHNYQ0tYnfGJFg8tOkZRDVOU/REtQ8FBa1RGWnMzTmU+ 5abV6tEWHTKrAlrnMtLqH01zqoDMbM80x54DP+Ym066eYt8L7hUWyY6OfFfB +Pmkl06lsXrbICg3szLOkPUV/3pAmhVsCH7Jt1LB7jFFFpk4nfJAFF6X+jHL Akr8BjZpf0bGKY65Tl5YmklAh6ea6OyWSsD+jn6uiYrf3skzcCOoaVOXy26o XR49m7O/ugvWeitBfTexe68eN29cpSFOzzhAmGuuhZMaiGM8EOlcxArPokwI 0RysnZJxkvG0G914Dzqz9CBWyYuA7gMTQJVXdaRAoVNVqu6YOjHjxMFcfyz8 wEhpkqccPws5pt+GDCDWlp3OpM4LUFBNQMdmTPezbrT6OE9i1hZcglFtp1k/ DMJwzdm+YCo4vbgyOiHWAOzKOLLrK0G1H80OYE33BDG4eKXKznMIrUDYqhhb R8bh2VziKeRsgjfLU40vmfesVHtR1jDKYRlT/Gk3yrkelMHXKqNUmxGWANYl ABrJtGVM8UtugAs8AM01wldCgOrntAhdX4MuoZCWjEk2F+EJyzHoFntKMbSB MMnqFaFr4OQ2ZpxKGXRCv0YoS7VyXHuS9tpmIRhDjLdIfAMYX4NndmSPeK+4 8S2P8MX+EqAKBKwe4U8nKGloXG8DxEaGWJ9RH6+6Ia7yJDiYdlRGATx3/XT1 qOhdNKHVHMa20GvEXwLwzQC+VKk11oDom/zoy7m0Pc4JNqyVkIViwqlq6UlH +KP715V6/ssv7yvqP6s0hxL86KEb18KqiH6bWf2uxeeByCDjqIpIQmqFCisV vvlReDmV7QQmFRs8vMxNzjQnBbvEqORJEa8Km1fB/D5NOanPAKnAwqqTpRXW FGXk824Omz0cwl29kIMC3j83h+cMh0Ihvlqq3VRYeM969fjhD75OB93NPEl4 ncG+1SOFhxN1VYJaaMmN/QnA3mawW5Muhb3Y+8Sl+0sfLf2pNykma2Eu9oab z/W6tl37ZvbdX8NstOdm9DAwagVXqjCnfSg6JWL68e5XPr0GqsswEmZllL9d P/OOWg9kqCM3n/uAzyAY5GvMGUWKT4mHtgL1f+l1YTlMAN50k9rhKbseSNLo 3KTOAimaG9SbJCkiYZJKhJbClEFfD6NNOZhgFXZJFkL44XK2nZqJMYtKYcq6 mss5nAAOzcChAQqt9PciKLS3khz2eDjcn8iEMuCp6rkiO4cjwKERiquROcyz 6qpghhOzPCGs2NTVfg8b+5bnBTNMzs7JZi+wGQgZaWE2s2VV6X9fdbM55FGJ ubV+WFs6NwvS2OhRcAdwGADz0lZL7gq/LffpUFrhwpftyoaI1n5iTmj/IkUo 8+6IgG++tQ0I0MR1GEt7MsxQ3nZjv82ThHNxSUUiX51t5lVp15V6bABW/aC0 Ori0JkBGDCthwEb2xz1CsX+LJszMhqtktRJYhTN4exI8ilmNBVbvuFmd9LAK Txyxc7X1ambJS+BoWh8rUeFMeCxT6oLy0yv72pXnBUROe4icTqRHKX977vFx LrCog3KbkGBhXKADEmOuDhBOZhJzt4eP/ft8BePLu3LzmQZ87L2tghlnplqm oLiYrAyFafP7bj73SD7CFE6arxUsZ96Xm8944FOdqDIFeQZXWStMm82J7sLk DB89NiYM+kSizhT4I7l5dAKPKqiz2cyjBersIzePBzx5OR7XWWQAx3PzGQJ8 KmA+M5/5DIR5cnjCu21oxgce9OjmDsjPqdx8moFPEfKziH2gQc5odJ19083n EQ+f8NxgOz/nc86Y+5kT4JJXVJthZhmLvw8UmT4ZXltycHqVWY1g6McSqVCS vy/n1LLaHKQIodszmZVcTNUwOf5OEvcTHkkciUMeWe9DqbirItwKaziCr2WM FTDlNSebC2M1BaIPpTn338OreAqWtV5y4S3Ja4PuvDqJKUz0d904gnVe3us+ CMK7rLEEmgsls8FE5KYb1uvVmVI7qi3Tq7Av0+vznlyFdwyx5UG9Bpe71Ipi VsWh6t2q2fByB0DxoqfS7TM8Q+5PAgpa5KiMY2ozI7swtfuyB8leiAchWQnz rVpG8pEbyWseJHsSMVEYngAkyyEm9YxEn8GiVRwcKjHLj1wZu+NIRCqm/rth jtMg+w9rlKZyJhKva2hyqrDLfLxg6fJxQLAYZiVNAYJkfb7jRvCmJxa3JHKh YkFIFkIuBnEuvu5G8mVPVewwrRVMfRo0jwGYeTApaGcwZrVAyNaA+ZoHzM0m yCEY8yjquUEApoQt9v8EwDkwylsnkNgAzb1PhIZMDb+TFq1it0AZIi2atQAL pXrcB0BnQVo7yoGqYqPVSQP0PQ/QXTHQKhtoCBZjeg6gTofBe1TccVIP4U22 CO+HEq8QxN4Yb4WNN5wRloO9C8BOhVF8HBeAdiptXQuDz30cIBCGEQ6hs2bN urJy5UpNvqhbDpZ8rP1wPbTfDpgmQ64nMiZzFoaQsIndtz2xi29CXxnEvmBM LoGyhErPUQ8Dygkw/ExllK+6UX4iUdLwI77WJ3fW9wL2cRDhGeXYVYDCm8Ta vmSw/4IHezhw2NgHxtgrbezBBLQc+U5APgaGutkxjjJxveiG/30P/B3wtcF6 E8OnwN8I8LtgnFxQHnj1tzldQtiCEd4vSeSitG+Er42IA5+xaLYA9pFQNIsZ O52lZLD/coDFsR+wFb44Jjf6dYB+OAzFyxi9PmlNu8OiAPMP4s+V7TNsCRCL Qp8cI3ZUStmYtwIgD4XBeSVDphMVTcB/zVMsm+BrM2Pw2cfBJQC/HepljQQT zkp154+7Ofxm+deij60Pvlau8FwlMw8IDIaBfGMQf7sMFIrwjAbA/kMP9tXB 10S5L/cUT0U0bs6w8IYrhi0wlgflWVYvdP69wfu7HrwrAO/aYFPBP4JONnhV vEO8TVAg2xjvQ9CxEeePJF5R392Qli25a2MsYB8Ao791QN9G0ePG/uMAi5hB LQbM29NqIoF4JCBugGiHuzIJOdIVWwbxTzzRDgpIFtWuqDrKkVOshwLyvoA8 2DUu27kMlrvV1iCMhT+UeEU1zwWaB3NXxyBAXAfVsY+rgy4TNbH+Yw/2WYD9 9tzYBwD2Goj2QcZ+zo39TzzYp8PXTsXYHXVSNmT2AfBVMD08wuDN1duiWg34 n3rATwHw52Pw2YfMKoBfhOnh7RJ+qNHTbvh/LuELjU6Er12M4TvrpibCHo44 dm0HR8bK1GhuCiGK1OjyL4I+hfONhY9f8mILtkX/7pKhCmGEx4cAxl95QjUa vqY7reJuAvmpGCwJGv8b2bgoo86gcVFGuvEabvwYfN5w+HtPNyNc3dTJbsKq otvomG7+l6ebocHXRFXpboJLL8sKg259arr5P56MtLoy0p+DRr+2aLr5Z50s 125Is6ujgdzRHvj8EisMxfhrZTsQja4UNXFfu1P6qvIEcICrrxbZV1gOt6T0 VSv7EjXRD4KvvxRksawm9Eqmls9S68P1nh7qXFkawpHbDuxtNg2evqpdfTlW S29I6WugJ0sVriyN4L62QaTtvnQhJbyWmh9Z3rxKx3UpzcPquvps0Je+dF+9 pT86PGZdtlKzESJsV0Jb9HYxuh9AsTf6Sy/mRR05VvzXp/TRJfuohD5iMg3c h94f0h/ttlqeAugrXC07BpjVUBc2+vkZ+/hHzvPKlOZXZmz+rz1JXpbSx5aM ffwZRyhoSpaq3fxOVw1Vyub/iJtfBOVjJ/lg9C1/87/PzS9Iaf5OV/MJBfwW Nz8vpfkLMjjO4v/VOL/2WKHzqZdi9UeXWS0/mjGrwapF2eLKTCgaG/izGZv/ FseFdkfs5l/L2Pw3uPmpUJN281/O2PyXuPnJKc1/AM1TTcJx8Cir46Fy7Px+ N0Lm7+MFzi/N++3mf8XVfKLun+AI6Xm8/tRyq9Efyrg4q/0hbrQLisbG/JOM Wb2Hmx+Z0vyfZmz+pGw+zCrtFtjN/3XG5o/GCbVtnnYH7Ob/KWPzezg4bVAv dmrjHZwMde9YtBucpY8mV2HqPuJ9Ch1jPe3axL21ZOltePTVoOWwgULRJYjE wYIw+8F8UP21ItnHeBk1pyoWc+Jp/6KMx6yM2Z/FsWrI0sfSjH04DisHu62y gMv6WJ+xj07uo0+WPm7M2EcbZ7oG6qos53uhD1LKQM55ZZY+bovgZVWK40wu vSddjKerVh9noy9k0EdwcXV1cigK/y9rvEcGScPWtypNXKZdlkF9hbRmtCr5 1u/8bMPPNvxsw882/GzD/wMbCj/3fwHEwPLD\ \>", "ImageResolution" -> \ 144.],ExpressionUUID->"36cc2567-0b81-481d-b40a-8713a3328dc4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Net", "Section",ExpressionUUID->"1dc60f21-6afa-4681-8107-f8d76a37175b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[77]:=",ExpressionUUID->"05ef11ec-fc4c-4f36-befa-2816fb10225b"], Cell[BoxData[ GraphicsBox[ {RGBColor[1, 1, 0.85], EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[1, 2], 3}, { 1, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[3, 2], 3}, { 2, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[5, 2], 3}, { 3, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 3, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 3, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 4 + Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2] (11 + 3^Rational[1, 2])}, {Rational[7, 2], 1}, { Rational[7, 2], 2}, {Rational[7, 2], 3}, {Rational[7, 2], 4}, { Rational[1, 2] (9 - 3^Rational[1, 2]), Rational[5, 2]}, { 4, 1 + Rational[-1, 2] 3^Rational[1, 2]}, { 4, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 4, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 4, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 4, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[9, 2], 0}, { Rational[9, 2], 1}, {Rational[9, 2], 2}, {Rational[9, 2], 3}, { 5, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 5, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 5, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 5, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[11, 2], 0}, { Rational[11, 2], 1}, {Rational[11, 2], 2}, {Rational[11, 2], 3}, { Rational[11, 2], 5 + 3^Rational[1, 2]}, { 5 + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] (7 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (4 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 6, 5 + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] (11 + 3^Rational[1, 2]), Rational[1, 2]}, { Rational[13, 2], 1}, {Rational[13, 2], 2}, {Rational[13, 2], 3}, { 7, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[15, 2], 3}, { 8, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[17, 2], 3}}, {{ 0, 3.8660254037844384`}, {0.5, 3}, {1, 3.8660254037844384`}, {1.5, 3}, { 2, 3.8660254037844384`}, {2.5, 3}, {3, 3.8660254037844384`}, { 3, 4.866025403784438}, {3, 5.866025403784438}, {3.1339745962155616`, 6.366025403784438}, {3.5, 1}, {3.5, 2}, {3.5, 3}, {3.5, 4}, { 3.6339745962155616`, 2.5}, {4, 0.1339745962155614}, { 4, 3.8660254037844384`}, {4, 4.866025403784438}, { 4, 5.866025403784438}, {4, 6.866025403784438}, {4.5, 0}, {4.5, 1}, { 4.5, 2}, {4.5, 3}, {5, 3.8660254037844384`}, {5, 4.866025403784438}, { 5, 5.866025403784438}, {5, 6.866025403784438}, {5.5, 0}, {5.5, 1}, { 5.5, 2}, {5.5, 3}, {5.5, 6.732050807568877}, {5.866025403784438, 4.366025403784438}, {6, 2.8660254037844384`}, { 6, 3.8660254037844384`}, {6, 4.866025403784438}, { 6, 5.866025403784438}, {6.366025403784438, 0.5}, {6.5, 1}, {6.5, 2}, { 6.5, 3}, {7, 3.8660254037844384`}, {7.5, 3}, {8, 3.8660254037844384`}, { 8.5, 3}}], PolygonBox[{{18, 26, 27, 19}, {26, 18, 17, 25}, {26, 25, 34}, {27, 26, 37, 38}, {27, 38, 33}, {19, 27, 28, 20}, {19, 20, 10}, {18, 19, 9, 8}, {18, 8, 14}, {31, 23, 22, 30}, {23, 31, 32, 24}, {23, 24, 15}, {22, 23, 12, 11}, {22, 11, 16}, {30, 22, 21, 29}, {30, 29, 39}, {31, 30, 40, 41}, { 31, 41, 35}, {1, 2, 3}, {3, 2, 4}, {3, 4, 5}, {5, 4, 6}, {5, 6, 7}, {7, 6, 13}, {7, 13, 17}, {17, 13, 24}, {17, 24, 25}, {25, 24, 32}, {25, 32, 36}, {36, 32, 42}, {36, 42, 43}, {43, 42, 44}, {43, 44, 45}, {45, 44, 46}}]]}]], "Output", CellLabel->"Out[77]=",ExpressionUUID->"abb24f3d-ad21-442b-b0c8-9200e9103072"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[78]:=",ExpressionUUID->"aa765a36-5044-471a-a4ca-40ff833c3213"], Cell[BoxData[ GraphicsBox[ {EdgeForm[GrayLevel[0]], GraphicsComplexBox[ NCache[{{0, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[1, 2], 3}, { 1, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[3, 2], 3}, { 2, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[5, 2], 3}, { 3, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 3, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 3, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 4 + Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2] (11 + 3^Rational[1, 2])}, {Rational[7, 2], 1}, { Rational[7, 2], 2}, {Rational[7, 2], 3}, {Rational[7, 2], 4}, { Rational[1, 2] (9 - 3^Rational[1, 2]), Rational[5, 2]}, { 4, 1 + Rational[-1, 2] 3^Rational[1, 2]}, { 4, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 4, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 4, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 4, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[9, 2], 0}, { Rational[9, 2], 1}, {Rational[9, 2], 2}, {Rational[9, 2], 3}, { 5, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 5, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 5, 5 + Rational[1, 2] 3^Rational[1, 2]}, { 5, 6 + Rational[1, 2] 3^Rational[1, 2]}, {Rational[11, 2], 0}, { Rational[11, 2], 1}, {Rational[11, 2], 2}, {Rational[11, 2], 3}, { Rational[11, 2], 5 + 3^Rational[1, 2]}, { 5 + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] (7 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (4 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (6 + 3^Rational[1, 2])}, { 6, Rational[1, 2] (8 + 3^Rational[1, 2])}, { 6, 5 + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2] (11 + 3^Rational[1, 2]), Rational[1, 2]}, { Rational[13, 2], 1}, {Rational[13, 2], 2}, {Rational[13, 2], 3}, { 7, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[15, 2], 3}, { 8, Rational[1, 2] (6 + 3^Rational[1, 2])}, {Rational[17, 2], 3}}, {{ 0, 3.8660254037844384`}, {0.5, 3}, {1, 3.8660254037844384`}, {1.5, 3}, { 2, 3.8660254037844384`}, {2.5, 3}, {3, 3.8660254037844384`}, { 3, 4.866025403784438}, {3, 5.866025403784438}, {3.1339745962155616`, 6.366025403784438}, {3.5, 1}, {3.5, 2}, {3.5, 3}, {3.5, 4}, { 3.6339745962155616`, 2.5}, {4, 0.1339745962155614}, { 4, 3.8660254037844384`}, {4, 4.866025403784438}, { 4, 5.866025403784438}, {4, 6.866025403784438}, {4.5, 0}, {4.5, 1}, { 4.5, 2}, {4.5, 3}, {5, 3.8660254037844384`}, {5, 4.866025403784438}, { 5, 5.866025403784438}, {5, 6.866025403784438}, {5.5, 0}, {5.5, 1}, { 5.5, 2}, {5.5, 3}, {5.5, 6.732050807568877}, {5.866025403784438, 4.366025403784438}, {6, 2.8660254037844384`}, { 6, 3.8660254037844384`}, {6, 4.866025403784438}, { 6, 5.866025403784438}, {6.366025403784438, 0.5}, {6.5, 1}, {6.5, 2}, { 6.5, 3}, {7, 3.8660254037844384`}, {7.5, 3}, {8, 3.8660254037844384`}, { 8.5, 3}}], { {RGBColor[1, 0, 0], PolygonBox[{{1, 2, 3}, {3, 2, 4}, {3, 4, 5}, {5, 4, 6}, {5, 6, 7}, {7, 6, 13}, {7, 13, 17}, {17, 13, 24}, {17, 24, 25}, {18, 8, 14}, {19, 20, 10}, {22, 11, 16}, {23, 24, 15}, {25, 24, 32}, {25, 32, 36}, {26, 25, 34}, {27, 38, 33}, {30, 29, 39}, {31, 41, 35}, {36, 32, 42}, {36, 42, 43}, {43, 42, 44}, {43, 44, 45}, {45, 44, 46}}]}, {RGBColor[1, 0.5, 0], PolygonBox[{{18, 19, 9, 8}, {18, 26, 27, 19}, {19, 27, 28, 20}, {22, 23, 12, 11}, {23, 31, 32, 24}, {26, 18, 17, 25}, {27, 26, 37, 38}, {30, 22, 21, 29}, {31, 23, 22, 30}, {31, 30, 40, 41}}]}}]}]], "Output", CellLabel->"Out[78]=",ExpressionUUID->"74d69a86-a0fc-461f-97c1-c463aa3ebd6e"] }, Open ]], Cell[BoxData[ RowBox[{"NetPrintout", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}], ",", "\"\\""}], "]"}]], "Input",ExpressionUUI\ D->"83d44b12-9bb3-4b70-9c72-2085a9444744"] }, Closed]], Cell[CellGroupData[{ Cell["Properties", "Section",ExpressionUUID->"9b411472-7b76-40a8-a78e-f7168fc07679"], Cell[CellGroupData[{ Cell["Initialization", "Subsubsection",ExpressionUUID->"ddd7fc29-4d9b-4c37-8194-5badf2f115af"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Polyhedra`"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[4]:=",ExpressionUUID->"0fa9fcb6-0efc-420a-aecc-2b41b8070016"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"pname", "=", "\"\\""}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[5]:=",ExpressionUUID->"90903ef4-62ea-4c29-a716-ba9e9d565ab2"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, { 12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, { 21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, { 5, 22, 21}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], {{9, 15, 11}, { 17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, { 17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], {{9, 15, 11}, { 17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, { 17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, { 17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[5]=",ExpressionUUID->"cb713d8a-1cf4-4b5d-aade-afb5d0d003b5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vol", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[6]:=",ExpressionUUID->"8eed6608-7173-4f20-a1cb-ee12f29af13a"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"8.15\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 8.15357483362127410941866401117295026779`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 8.153574833621274}, "NumericalApproximation"], Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 + 594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[6]=",ExpressionUUID->"97374caa-daec-40b0-abe5-6d21fde01595"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Centroid", "Subsection",ExpressionUUID->"461cee03-1522-4810-a1ac-0e6479e2550a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"AbsolutePointSize", "[", "10", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"Blue", ",", RowBox[{"Point", "[", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "]"}]}], "}"}], ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input", CellLabel->"In[81]:=",ExpressionUUID->"28b9483a-e3dc-486e-85e9-bf1daafbbf79"], Cell[BoxData[ Graphics3DBox[ {AbsolutePointSize[10], Point3DBox[{0, 0, 0}], {RGBColor[0, 0, 1], Point3DBox[{0, 0, 0}]}, {Opacity[0.2], GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, { 1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, { 14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]]}}]], "Output", CellLabel->"Out[81]=",ExpressionUUID->"16f21f9b-8a9f-43f3-8e32-501abb2695c2"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[82]:=",ExpressionUUID->"97629861-28c2-4203-af68-5b9bc263a9d7"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellLabel->"Out[82]=",ExpressionUUID->"2990f2a5-09aa-4b47-bce9-5c97faf44737"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"RegionCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[84]:=",ExpressionUUID->"28900788-41c5-44cd-b444-cf0b479d7898"], Cell[BoxData[ RowBox[{"{", RowBox[{"15.862463`", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[84]=",ExpressionUUID->"96e1f0a5-444f-4e64-ba04-8e4f30229c93"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"PolyhedronCentroid", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Timing"}]], "Input", CellLabel->"In[85]:=",ExpressionUUID->"1e802fe8-6820-422a-b5b9-8b2eebe9c1ad"], Cell[BoxData[ RowBox[{"{", RowBox[{"65.017329`", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[85]=",ExpressionUUID->"735b78b0-32b6-4e49-b6cf-5a79084a5df4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circumsphere", "Subsection",ExpressionUUID->"a7436b9d-7607-4cf6-9986-6151c8440e8f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[86]:=",ExpressionUUID->"010b98df-0bb5-4eff-9771-65a50fc2a347"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[86]=",ExpressionUUID->"fcfe9a61-9dd2-4e7d-9897-5b16ef0b8b8a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Circumsphere", "[", "p", "]"}]], "Input", CellLabel->"In[87]:=",ExpressionUUID->"62f11410-a72a-4518-bde9-fca0d19f01ac"], Cell[BoxData[ TemplateBox[{ "Circumsphere", "indep", "\"Circumsphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \\\ \"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{\\\"0\\\", \\\",\\\", RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \ SqrtBox[\\\"2\\\"]]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \ RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\ \"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \ \\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", FractionBox[\\\"1\ \\\", SqrtBox[\\\"2\\\"]], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \ RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\ \"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \ \\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \ RowBox[{\\\"-\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \ FractionBox[\\\"1\\\", SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"6\\\", \\\"\[RightSkeleton]\\\ \"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \ SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", FractionBox[\\\"1\\\", \ SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \\\"0\\\", \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"14\\\", \ \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"}\ \\\"}]}], \\\"]\\\"}]\\).\"", 2, 87, 1, 19518076696055196288, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[87]:=",ExpressionUUID->"5da21f9b-5cf0-4f9a-9ee9-ad10f72e8e18"], Cell[BoxData[ RowBox[{"Circumsphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, { 12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, { 17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, { 8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, { 14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel->"Out[87]=",ExpressionUUID->"5ddcae32-484e-4e6c-9cb7-20fbea33da6f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"MyCircumsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel->"In[88]:=",ExpressionUUID->"fb80f845-33fc-4f3f-9bf2-a0191b9ee7b0"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.246737`", ",", RowBox[{"{", "}"}]}], "}"}]], "Output", CellLabel->"Out[88]=",ExpressionUUID->"d8c536fa-f2c0-4824-a9a6-abffa088aa29"] }, Open ]], Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".2", "]"}], ",", "Yellow", ",", "sphere"}], "}"}], ",", "p"}], "}"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input", CellLabel-> "In[275]:=",ExpressionUUID->"f19f4681-eb11-4dfd-9dd3-4e3eba746714"] }, Closed]], Cell[CellGroupData[{ Cell["Convex", "Subsection",ExpressionUUID->"347d361f-31de-4d09-ba22-a33c4588c88d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ConvexPolyhedronQ", "[", "p", "]"}]], "Input", CellLabel->"In[89]:=",ExpressionUUID->"368c0d72-0970-4c98-8ae5-82199e94dbbd"], Cell[BoxData["True"], "Output", CellLabel->"Out[89]=",ExpressionUUID->"48068cbc-aed9-42ce-b85f-899d2356ea27"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["DihedralAngles", "Subsection",ExpressionUUID->"ccacc236-b65c-4e36-8255-0671356d087e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "//", "Tally"}]], "Input", CellLabel->"In[90]:=",ExpressionUUID->"f6836771-30ad-4e68-95a4-1779abe887ef"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}]}], ")"}]}], "]"}], ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox["1", SqrtBox[ FractionBox["6", RowBox[{"3", "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "70"}], "-", RowBox[{"50", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"9908", "+", RowBox[{"7006", " ", SqrtBox["2"]}]}]]}], ")"}]}]]}]}]]]]}], "]"}], ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.877\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.87739856415969097458429359903675504029`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"17", "+", RowBox[{"216", " ", "#1"}], "+", RowBox[{"196", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"744", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"602", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"744", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"324", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"216", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"81", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.877398564159691}, "NumericalApproximation"], Root[ 17 + 216 # + 196 #^2 - 744 #^3 - 602 #^4 + 744 #^5 + 324 #^6 - 216 #^7 + 81 #^8& , 2, 0]], "]"}], ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"3", " ", "\[Pi]"}], "4"], ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"ArcCos", "[", RowBox[{"-", SqrtBox[ FractionBox["2", "3"]]}], "]"}], ",", "16"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[90]=",ExpressionUUID->"e6f50e28-fb81-46bc-a462-9b9a34b5a50b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"DihedralAngles", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Tally"}]], "Input", CellLabel->"In[91]:=",ExpressionUUID->"664a95f2-e83b-48d3-a4f3-87a45a5ac2cd"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[91]=",ExpressionUUID->"c9af5b26-078c-4ad3-a11d-350dcffd8d19"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["EdgeLengths", "Subsection",ExpressionUUID->"d7082a99-407b-49aa-b4c6-4dff82912c71"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[92]:=",ExpressionUUID->"2c2e4261-9f46-4ada-bbe1-96e5702e9dce"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[92]=",ExpressionUUID->"36ae2e6f-6efd-4dfe-9e83-a98d46092d32"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "/.", RowBox[{ RowBox[{"Line", "[", "l_", "]"}], "\[RuleDelayed]", RowBox[{"EuclideanDistance", "@@", "l"}]}]}], "//", "FullSimplify"}], "//", "Union"}], "//", "Quiet"}]], "Input", CellLabel->"In[93]:=",ExpressionUUID->"66712797-64c5-4ca5-b5e6-da908e51cc56"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output", CellLabel->"Out[93]=",ExpressionUUID->"972cfda9-1ae9-47fd-bf37-d00bef2df8c6"] }, Open ]] }, Closed]], Cell["Faces", "Subsection",ExpressionUUID->"940321c0-d329-4895-b0f3-bacf14d64abd"], Cell[CellGroupData[{ Cell["GeneralizedDiameter", "Subsection",ExpressionUUID->"ad514590-121e-490c-9b0b-06d3c3c69a90"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[94]:=",ExpressionUUID->"88582903-ac25-4e6e-a578-2a95ffc978df"], Cell[BoxData[ SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]]], "Output", CellLabel->"Out[94]=",ExpressionUUID->"164e2099-ef7f-46ed-8cbb-8b359a7f001e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GeneralizedDiameter", "[", "p", "]"}], "//", "FullSimplify"}], "//", "Quiet"}]], "Input", CellLabel->"In[95]:=",ExpressionUUID->"09f00f63-7fe6-4f84-8bdb-922bebe7e0c8"], Cell[BoxData[ SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]]], "Output", CellLabel->"Out[95]=",ExpressionUUID->"dc986d5b-8e31-4cb5-9399-a20d4fc1b357"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["InertiaTensor", "Subsection",ExpressionUUID->"46e9b3c3-8bb3-4f31-a2eb-5658dd8a4c89"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[96]:=",ExpressionUUID->"32b5449c-267d-47dc-8eb0-efb42f174ed1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.613\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.61257733346343501423802990757394582033`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "23342222273"}], "-", RowBox[{"180903240960", " ", "#1"}], "+", RowBox[{"4742529728000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"28741649408000", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"7169884160000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"55083008000000", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"68124672000000", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"26214400000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"13107200000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.612577333463435}, "NumericalApproximation"], Root[-23342222273 - 180903240960 # + 4742529728000 #^2 + 28741649408000 #^3 - 7169884160000 #^4 - 55083008000000 #^5 - 68124672000000 #^6 + 26214400000000 #^7 + 13107200000000 #^8& , 5, 0]], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.613\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.61257733346343501423802990757394582033`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "23342222273"}], "-", RowBox[{"180903240960", " ", "#1"}], "+", RowBox[{"4742529728000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"28741649408000", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"7169884160000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"55083008000000", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"68124672000000", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"26214400000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"13107200000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.612577333463435}, "NumericalApproximation"], Root[-23342222273 - 180903240960 # + 4742529728000 #^2 + 28741649408000 #^3 - 7169884160000 #^4 - 55083008000000 #^5 - 68124672000000 #^6 + 26214400000000 #^7 + 13107200000000 #^8& , 5, 0]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65787343954424948311299203851376660168`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2145089", "-", RowBox[{"110505920", " ", "#1"}], "+", RowBox[{"2245288000", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"22815904000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"122232480000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"341824000000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"484736000000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"307200000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"54400000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.6578734395442495}, "NumericalApproximation"], Root[ 2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 + 122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 - 307200000000 #^7 + 54400000000 #^8& , 5, 0]]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[96]=",ExpressionUUID->"632575fc-7063-4e4a-8d2e-26a7ad7683dc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{"MomentOfInertia", "[", RowBox[{"p", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], "]"}], RowBox[{"Volume", "[", "p", "]"}]], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel->"In[97]:=",ExpressionUUID->"26da62fd-ba04-4030-963b-33c964101e8b"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[97]=",ExpressionUUID->"fa6e7333-d9af-4b5b-9530-9d23b6a6a558"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronInertiaTensor", "[", "p", "]"}], "//", "Timing"}]], "Input", CellLabel->"In[98]:=",ExpressionUUID->"7a123ed0-379c-43a3-adaa-9f6c3ae17a2f"], Cell[BoxData["$Aborted"], "Output", CellLabel->"Out[98]=",ExpressionUUID->"0227c32a-6615-4ca0-a9dd-7f05918017f2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Insphere", "Subsection",ExpressionUUID->"55152c01-243a-4fce-865a-751417b3ca79"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[99]:=",ExpressionUUID->"b80d0586-ea9d-4794-af9d-9a39a7324e1f"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel->"Out[99]=",ExpressionUUID->"5867cb8c-ebd1-45b8-9741-4d5a1895cb3b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insphere", "[", "p", "]"}]], "Input", CellLabel-> "In[100]:=",ExpressionUUID->"180f9203-318e-4dcc-8bdd-c05cd1afbb7f"], Cell[BoxData[ TemplateBox[{ "Insphere", "indep", "\"Insphere does not exist for \\!\\(\\*RowBox[{\\\"Polyhedron\\\", \ \\\"[\\\", RowBox[{RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"{\\\", \ RowBox[{\\\"0\\\", \\\",\\\", RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \ SqrtBox[\\\"2\\\"]]}], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \ RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\ \"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \ \\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", FractionBox[\\\"1\ \\\", SqrtBox[\\\"2\\\"]], \\\",\\\", RowBox[{\\\"Root\\\", \\\"[\\\", \ RowBox[{RowBox[{RowBox[{\\\"47\\\", \\\"-\\\", RowBox[{\\\"96\\\", \\\" \\\", \ RowBox[{\\\"Slot\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"608\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{\\\"1408\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\ \"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \ \\\"+\\\", RowBox[{\\\"256\\\", \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]}], \\\"-\\\", RowBox[{\\\"1024\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"512\\\", \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"512\\\", \\\ \" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \\\"&\\\"}], \ \\\",\\\", \\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"]\\\"}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \ RowBox[{\\\"-\\\", SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", \ FractionBox[\\\"1\\\", SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"6\\\", \\\"\[RightSkeleton]\\\ \"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \ SqrtBox[RowBox[{\\\"1\\\", \\\"+\\\", FractionBox[\\\"1\\\", \ SqrtBox[\\\"2\\\"]]}]]}], \\\",\\\", \\\"0\\\", \\\",\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \ SqrtBox[RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"-\\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]}]]}]}], \\\"}\\\"}], \ \\\",\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"14\\\", \ \\\"\[RightSkeleton]\\\"}]}], \\\"}\\\"}], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"}\ \\\"}]}], \\\"]\\\"}]\\).\"", 2, 100, 2, 19518076696055196288, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[100]:=",ExpressionUUID->"72819d0e-28a5-417d-be56-387cab3221ab"], Cell[BoxData[ RowBox[{"Insphere", "[", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, { 12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], TagBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^ Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^ Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, \ -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, { 0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], "Polyhedron"]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["24", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["34", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, {2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, { 17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, { 8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, { 14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}], Editable->False, SelectWithContents->True, Selectable->False], "]"}]], "Output", CellLabel-> "Out[100]=",ExpressionUUID->"d5c0aba9-200c-4baa-8c2b-40583fd2e0ab"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"MyInsphere", "[", "p", "]"}]}]], "Input", CellLabel-> "In[101]:=",ExpressionUUID->"b2e624ef-92ab-495e-956b-fcbaa1078723"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[101]=",ExpressionUUID->"c416270e-a452-480b-8fce-1283f492c183"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanCylindricalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"a322f0f4-a333-42f0-b34a-293ced2d3a19"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[9]:=",ExpressionUUID->"da471ebf-d216-4722-8f74-7c051523ea63"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[9]=",ExpressionUUID->"b1ab2dec-0b69-441e-9e31-ae1338eec582"] }, Open ]], Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input",ExpressionUUID->"a0c4e92c-3a30-4944-934d-c87591878765"], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[26]:=",ExpressionUUID->"61ee1fc1-4709-4600-8baa-879a22765491"], Cell[BoxData[ TemplateBox[{ "NIntegrate", "slwcon", "\"Numerical integration converging too slowly; suspect one of the \ following: singularity, value of the integration is 0, highly oscillatory \ integrand, or WorkingPrecision too small.\"", 2, 26, 3, 21671101025154828720, "V14.0.0-Devel (3)"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[26]:=",ExpressionUUID->"4f2fa515-3c66-4019-9a38-bf2257259d7f"], Cell[BoxData["0.7551190630644945`"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[26]=",ExpressionUUID->"cf005891-bb0c-48c0-89ec-84bfa3247a2b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ClosestMeanCylindricalRadius", "[", "%", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[27]:=",ExpressionUUID->"91d75801-316a-4556-aadf-7918dafa2b07"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"agrees to within: \"\>", "\[InvisibleSpace]", "0.0007335474641612105`"}], SequenceForm["agrees to within: ", 0.0007335474641612105], Editable->False]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[27]:=",ExpressionUUID->"2fe7f33a-8b10-4708-bcb5-3a1f69d8eec4"], Cell[BoxData["$Failed"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[27]=",ExpressionUUID->"feafd3a3-3e41-4955-960c-0a9d6c10a6c8"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"13cc068b-c00c-4a41-8299-44b6652a2a78"], Cell[BoxData[ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input",ExpressionUUID->\ "d8a18726-eabe-4f9b-a2e8-bf77dc161d6b"], Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"4bd0adaf-eff3-4c8b-b90f-ec3a8d0d037c"] }, Open ]], Cell[CellGroupData[{ Cell["Divergence theorem [unevaluated integral]", "Subsubsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"e4bb7f00-b936-4c00-a965-e7fe64e69941"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"MeanCylindricalRadius", "[", RowBox[{"p", ",", RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"3de79123-5aca-4f8c-a446-f6ff676b9c05"], Cell[CellGroupData[{ Cell[BoxData[ TemplateBox[{ "\"\\nIntegrateOverPolygon on polygon \"", "1", "\"/\"", "34", "\" (\"", "3", "\" sides)\""}, "Row", BaseStyle->RGBColor[0, 0, 1], DisplayFunction->(RowBox[{ TemplateSlotSequence[1, "\[InvisibleSpace]"]}]& ), InterpretationFunction->(RowBox[{"Row", "[", RowBox[{ RowBox[{"{", TemplateSlotSequence[1, ","], "}"}], ",", RowBox[{"BaseStyle", "\[Rule]", RowBox[{"RGBColor", "[", RowBox[{"0", ",", "0", ",", "1"}], "]"}]}]}], "]"}]& )]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"606a03c7-4c80-491e-9dc5-49f6249c6854"], Cell[BoxData["\<\" IntegrationIntervals:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"38bc660b-d328-478a-85d3-94e644f64436"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"aba4e28e-c5c0-4e98-a765-6babfda4cd2c"], Cell[BoxData["\<\" Polygon:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"e442316d-272a-48d0-903b-6ade44d7d4d4"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", SqrtBox["2"]]}], ",", FractionBox["1", "2"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"5", "+", FractionBox["7", SqrtBox["2"]]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], "2"], ",", FractionBox[ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], "2"], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"5", "+", FractionBox["7", SqrtBox["2"]]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]]}]], ",", "0", ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"5", "+", FractionBox["7", SqrtBox["2"]]}]]}]]}]}], "}"}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"ae357bab-a6f7-4c44-a33e-d83472ff6a0d"], Cell[BoxData["\<\" 1 integral(s):\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"43cb2ae9-a73d-4efe-8594-330cc58880b7"], Cell[BoxData[ RowBox[{"{", TemplateBox[{ RowBox[{ FractionBox["1", "16"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"3", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"58", "+", RowBox[{"41", " ", SqrtBox["2"]}]}]]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], " ", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], "2"]}]]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "2", "]"}], "-", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", "\[FormalS]", "+", RowBox[{ SqrtBox["2"], " ", "\[FormalS]"}], "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]", "+", RowBox[{ SqrtBox["2"], " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "\[FormalT]"}], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], "2"]}]]}], "]"}]}], ")"}]}]}], ")"}]}], "\[FormalT]", "0", "1", "\[FormalS]", "0", RowBox[{"1", "-", "\[FormalT]"}]}, "InactiveIntegrate", DisplayFunction->(RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #3, #4], RowBox[{ SubsuperscriptBox[ StyleBox["\[Integral]", "Inactive"], #6, #7], RowBox[{#, RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #5}], RowBox[{ StyleBox["\[DifferentialD]", "Inactive"], #2}]}]}]}]& ), InterpretationFunction->(RowBox[{ RowBox[{"Inactive", "[", "Integrate", "]"}], "[", RowBox[{#, ",", RowBox[{"{", RowBox[{#2, ",", #3, ",", #4}], "}"}], ",", RowBox[{"{", RowBox[{#5, ",", #6, ",", #7}], "}"}]}], "]"}]& )], "}"}]], "Print",\ CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"4853770c-b2fc-4c6e-ad7b-ee78b4e5fb94"], Cell[BoxData["\<\" integrals over t and s:\"\>"], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"6be283a5-62ab-4221-9a43-5ab73603000c"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["1", "16"], " ", SqrtBox[ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"3", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"58", "+", RowBox[{"41", " ", SqrtBox["2"]}]}]]}]], " ", RowBox[{ SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[{ SubsuperscriptBox["\[Integral]", "0", RowBox[{"1", "-", "\[FormalT]"}]], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], " ", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], "2"]}]]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "2", "]"}], "-", RowBox[{"Log", "[", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", "\[FormalS]", "+", RowBox[{ SqrtBox["2"], " ", "\[FormalS]"}], "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]", "+", RowBox[{ SqrtBox["2"], " ", "\[FormalT]"}], "-", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "\[FormalT]"}], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[FormalS]", "-", RowBox[{ SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], " ", "\[FormalS]"}], "+", "\[FormalT]"}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], ")"}], " ", "\[FormalS]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "\[FormalT]"}]}], ")"}], "2"]}]]}], "]"}]}], ")"}]}]}], ")"}], RowBox[{"\[DifferentialD]", "\[FormalS]"}], RowBox[{"\[DifferentialD]", "\[FormalT]"}]}]}]}]}], "}"}]], "Print", CellLabel-> "During evaluation of (V14.0.0-Devel (3)) \ In[28]:=",ExpressionUUID->"a74a853a-8da7-42d4-b026-cbf6a049f038"] }, Open ]], Cell[BoxData["$Aborted"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[28]=",ExpressionUUID->"1e253cad-0975-46b8-a8a2-b830bb987537"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (3)) \ In[29]:=",ExpressionUUID->"b88f8665-e10c-47ef-8f90-389e325030cd"], Cell[BoxData["rxy"], "Output", CellLabel-> "(V14.0.0-Devel (3)) \ Out[29]=",ExpressionUUID->"0d7542cb-3492-462b-a9d7-be31ad4380a9"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"LogSimplify", "[", "rxy", "]"}], "//", "FullSimplify"}]], "Input",E\ xpressionUUID->"125e8db2-2141-4c7d-a991-446fe907dd1f"] }, Closed]], Cell[CellGroupData[{ Cell["CAD", "Subsubsection",ExpressionUUID->"c0dd0f8c-d09d-41f7-a379-b204f1693ad8"], Cell["90+ GB", "Text",ExpressionUUID->"a9392263-2106-40f6-b238-ef663f6849f2"], Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[4]:=",ExpressionUUID->"b72aa733-111e-4d1c-9b26-435a4af3363d"], Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]], "Input",Expres\ sionUUID->"3775b55e-e447-4ad8-a3f8-549ccfec6eda"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"8c6b46c1-7659-405b-8ee6-\ 2f128e976a13"] }, Open ]], Cell[CellGroupData[{ Cell["CAD over 1/8", "Subsubsection",ExpressionUUID->"8849a97d-698f-4368-9c56-ad3c247e46eb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"reg", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&", RowBox[{"0", "<", "y", "<", "x"}], "&&", RowBox[{"z", ">", "0"}]}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[4]:=",ExpressionUUID->"63332d69-1032-4731-ab1e-685f35222a6d"], Cell[BoxData[ RowBox[{ RowBox[{"z", ">", "0"}], "&&", RowBox[{"y", ">", "0"}], "&&", RowBox[{ RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"3", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"58", "+", RowBox[{"41", " ", SqrtBox["2"]}]}]]}]], " ", "x"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}], "+", RowBox[{"y", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65844172304728565414677632361417636275`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"8", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.6584417230472857}, "NumericalApproximation"], Root[-2 + 8 #^2 - 8 #^4 + #^8& , 4, 0]]}]}], ")"}]}], "\[LessEqual]", SqrtBox[ RowBox[{"20", "+", RowBox[{"12", " ", SqrtBox["2"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]}]]}], "&&", RowBox[{ RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"3", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"58", "+", RowBox[{"41", " ", SqrtBox["2"]}]}]]}]], " ", "y"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["2"], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}], "+", RowBox[{"x", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65844172304728565414677632361417636275`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"8", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.6584417230472857}, "NumericalApproximation"], Root[-2 + 8 #^2 - 8 #^4 + #^8& , 4, 0]]}]}], ")"}]}], "\[LessEqual]", SqrtBox[ RowBox[{"20", "+", RowBox[{"12", " ", SqrtBox["2"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]}]]}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"]}], ")"}]}], "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]], " ", RowBox[{"(", RowBox[{"x", "+", "y"}], ")"}]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]", SqrtBox[ RowBox[{"20", "+", RowBox[{"12", " ", SqrtBox["2"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]}]]}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{"2", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}], ")"}]}]], " ", "y"}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]", SqrtBox[ RowBox[{"20", "+", RowBox[{"12", " ", SqrtBox["2"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]}]]}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "-", RowBox[{"2", " ", SqrtBox["2"]}], "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}], ")"}]}]], " ", "x"}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["2"], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]]}], ")"}], " ", "z"}]}], "\[LessEqual]", SqrtBox[ RowBox[{"20", "+", RowBox[{"12", " ", SqrtBox["2"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]}]]}], "&&", RowBox[{"z", "\[LessEqual]", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.14\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.1372545661180333276263354491675272584`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"47", "+", RowBox[{"96", " ", "#1"}], "-", RowBox[{"608", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"512", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 1.1372545661180333`}, "NumericalApproximation"], Root[47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "y"}], "+", RowBox[{"4", " ", SqrtBox["2"], " ", "z"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-9.26\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -9.26171044984559976853688567643985152245`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2048", "-", RowBox[{"32768", " ", "#1"}], "-", RowBox[{"10240", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"17408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12416", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"3328", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"448", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"32", " ", SuperscriptBox["#1", "7"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -9.2617104498456}, "NumericalApproximation"], Root[ 2048 - 32768 # - 10240 #^2 + 17408 #^3 + 12416 #^4 + 3328 #^5 + 448 #^6 + 32 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], " ", "x"}]}], "&&", RowBox[{ RowBox[{ RowBox[{"2", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "x"}], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], " ", "y"}], "+", RowBox[{"4", " ", SqrtBox["2"], " ", "z"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-9.26\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -9.26171044984559976853688567643985152245`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2048", "-", RowBox[{"32768", " ", "#1"}], "-", RowBox[{"10240", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"17408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12416", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"3328", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"448", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"32", " ", SuperscriptBox["#1", "7"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -9.2617104498456}, "NumericalApproximation"], Root[ 2048 - 32768 # - 10240 #^2 + 17408 #^3 + 12416 #^4 + 3328 #^5 + 448 #^6 + 32 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox[ RowBox[{"4", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], " ", "x"}], "+", RowBox[{"4", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "y"}], "+", RowBox[{"8", " ", "z"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-17.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -17.09803652894426662101068359334021806717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "557056"}], "-", RowBox[{"655360", " ", "#1"}], "+", RowBox[{"802816", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"679936", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"186368", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"24576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"1728", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "7"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -17.098036528944267`}, "NumericalApproximation"], Root[-557056 - 655360 # + 802816 #^2 + 679936 #^3 + 186368 #^4 + 24576 #^5 + 1728 #^6 + 64 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", "0"}], "&&", RowBox[{ RowBox[{ RowBox[{"4", " ", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], " ", "x"}], "+", RowBox[{"8", " ", "z"}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-17.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -17.09803652894426662101068359334021806717`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "557056"}], "-", RowBox[{"655360", " ", "#1"}], "+", RowBox[{"802816", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"679936", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"186368", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"24576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"1728", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"64", " ", SuperscriptBox["#1", "7"]}], "+", SuperscriptBox["#1", "8"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -17.098036528944267`}, "NumericalApproximation"], Root[-557056 - 655360 # + 802816 #^2 + 679936 #^3 + 186368 #^4 + 24576 #^5 + 1728 #^6 + 64 #^7 + #^8& , 1, 0]]}], "\[LessEqual]", RowBox[{"4", " ", SqrtBox[ RowBox[{"4", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], " ", "y"}]}], "&&", RowBox[{"y", "<", "x"}]}]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[4]=",ExpressionUUID->"1655042a-c7c9-4f80-87a1-0f6ee36e88e1"] }, Open ]], Cell["50+ GB", "Text",ExpressionUUID->"ac912842-f802-4831-990f-7fbd974d0e50"], Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[5]:=",ExpressionUUID->"d8e3c1a6-19d6-47a3-84f1-9b4de49e6669"], Cell[BoxData[ RowBox[{"8", FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[6]:=",ExpressionUUID->"ab1b6b6d-b3e6-40e0-bede-6fff20928f13"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxy", "=", RowBox[{"8", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[7]:=",ExpressionUUID->"99182a96-2712-48fe-af1d-d37d92528519"], Cell[BoxData[ RowBox[{"N", "[", "rxy", "]"}]], "Input",ExpressionUUID->"405909af-aac4-459e-b1bc-029a1238e5c4"], Cell[BoxData[ RowBox[{ RowBox[{"LogSimplify", "[", "rxy", "]"}], "//", "FullSimplify"}]], "Input",E\ xpressionUUID->"b9c1a8e4-493b-4cdf-916f-356f1060e49a"] }, Open ]], Cell[CellGroupData[{ Cell["Boole Integrate doing z integral first", "Subsubsection",ExpressionUUID->"e2da23e2-7784-49d7-b2cb-a85e22289786"], Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"ymin", ",", "ymax"}], "}"}], ",", RowBox[{"{", RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "==", RowBox[{"CoordinateBounds", "[", "p", "]"}]}]], "Input",ExpressionUUID->\ "b13fec0e-5fa2-4b24-a740-b71fb2888dfb"], Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[11]:=",ExpressionUUID->"4430d2f6-8dbf-445d-af78-5fe581b8d7af"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i1", "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Boole", "[", "ineq", "]"}], SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]]}], ",", RowBox[{"{", RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[12]:=",ExpressionUUID->"89a0603b-793f-4ae2-9bf0-d2a4de6fd6f9"], Cell[BoxData[ RowBox[{"NIntegrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[9]:=",ExpressionUUID->"57801585-cd3e-4554-a7cb-77a31fe2802a"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i2", "=", RowBox[{"Integrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"9336af2c-6037-47ad-926e-\ 16df8c6f92a3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareCylindricalRadius", "Subsection",ExpressionUUID->"d41d431e-199d-496a-b5a7-a6ab9133be29"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[7]:=",ExpressionUUID->"97c620e3-bd59-4d95-86be-98db38cb24bf"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65787343954424948311299203851376660168`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2145089", "-", RowBox[{"110505920", " ", "#1"}], "+", RowBox[{"2245288000", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"22815904000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"122232480000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"341824000000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"484736000000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"307200000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"54400000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.6578734395442495}, "NumericalApproximation"], Root[2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 + 122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 - 307200000000 #^7 + 54400000000 #^8& , 5, 0]]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[7]=",ExpressionUUID->"0f87bfaa-d48c-4f70-9010-026d5b3be371"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[8]:=",ExpressionUUID->"1090a92b-b2af-4a70-957c-9632cca6b905"], Cell[BoxData["0.6578734395442495`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[8]=",ExpressionUUID->"2bb6502a-0f51-4652-8312-898aae9a64ad"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[9]:=",ExpressionUUID->"ccccb30e-6f7f-442d-b43c-39d8cb0fa5dc"], Cell[BoxData["0.6578734395442626`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[9]=",ExpressionUUID->"2a7d1e18-e493-42cc-97d1-c6f72a25869b"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over Polyhedron", "Subsubsection",ExpressionUUID->"95593c03-1fc6-48cb-b836-4bd3e5ad9a0c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"(", RowBox[{"rxy2", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[10]:=",ExpressionUUID->"3729e4a1-a769-4ec3-b8d7-8c18906cc02f"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.658\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.65787343954424948311299203851376660168`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2145089", "-", RowBox[{"110505920", " ", "#1"}], "+", RowBox[{"2245288000", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"22815904000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"122232480000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"341824000000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"484736000000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"307200000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"54400000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.6578734395442495}, "NumericalApproximation"], Root[2145089 - 110505920 # + 2245288000 #^2 - 22815904000 #^3 + 122232480000 #^4 - 341824000000 #^5 + 484736000000 #^6 - 307200000000 #^7 + 54400000000 #^8& , 5, 0]]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[10]=",ExpressionUUID->"491abb18-be40-4ded-a137-4981761c1da4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "rxy2", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[11]:=",ExpressionUUID->"974b8deb-2c37-4b31-b30e-041247e8e970"], Cell[BoxData["0.6578734395442495`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[11]=",ExpressionUUID->"bbd879e4-76cd-49a4-9824-228c00e79145"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSphericalRadius", "Subsection", FontColor->RGBColor[ 1, 0, 0],ExpressionUUID->"dbbb1119-4d06-4f7a-9047-16050fa0e15d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[12]:=",ExpressionUUID->"37d8f707-2a69-4b0f-97af-58c4dfb91211"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotAvailable\"\>", "]"}]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[12]=",ExpressionUUID->"8cf98445-23ae-4f0e-bb43-5f2c2cbee165"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[13]:=",ExpressionUUID->"774b113b-dab7-4d74-a38c-ac6ee9aa1434"], Cell[BoxData["0.9389030769964997`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[13]=",ExpressionUUID->"43ecb4a3-b859-4e8c-89cd-619503ff9290"] }, Open ]], Cell[BoxData[ RowBox[{"ClosestMeanSphericalRadius", "[", "%", "]"}]], "Input",ExpressionUUID->"f56d09fa-8cde-4088-b9e8-c1fe843e0d8d"], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"e7d641d2-d2e4-4ff2-a632-2191ba4b3686"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxyz", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->\ "5ca87a80-cf9b-4b36-ae8b-b3d3bac561e3"], Cell[BoxData[ RowBox[{"N", "[", "rxyz", "]"}]], "Input",ExpressionUUID->"c4097a39-df83-4d4a-956a-856f393f597e"] }, Open ]], Cell[CellGroupData[{ Cell["Divergence theorem", "Subsubsection",ExpressionUUID->"38184e23-0072-468a-9fff-70cf2a30822c"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxyz", "=", RowBox[{"MeanSphericalRadius", "[", RowBox[{"p", ",", RowBox[{"\"\\"", "\[Rule]", "FullSimplify"}], ",", RowBox[{"Debug", "\[Rule]", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"985f288a-b3a4-4e7d-9e08-f15b7d4fee82"], Cell[BoxData[ RowBox[{"N", "[", "rxyz", "]"}]], "Input",ExpressionUUID->"995b6c02-e70c-4a59-b556-a186caf521e6"], Cell[BoxData[ RowBox[{ RowBox[{"LogSimplify", "[", "rxyz", "]"}], "//", "FullSimplify"}]], "Input",\ ExpressionUUID->"6dd8ee74-138b-4ca2-acf1-66b6fe00060c"] }, Open ]], Cell[CellGroupData[{ Cell["CAD", "Subsubsection",ExpressionUUID->"976307cc-bc63-4945-a2c7-5a9081146da6"], Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input",ExpressionUUID->"50541120-15e8-4729-8516-de23100830e4"], Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]], "Input",Expres\ sionUUID->"cd71902e-d781-4228-aed7-f641578f9e04"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxyz", "=", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"cf595278-c041-4740-acd5-\ 54f75a530a1b"], Cell[BoxData[ RowBox[{"N", "[", RowBox[{"rxyz", ",", "20"}], "]"}]], "Input",ExpressionUUID->"e7e9ab0a-35a6-\ 4667-8626-5b8075a48b2f"], Cell[BoxData[ RowBox[{"rxysimp1", "=", RowBox[{ RowBox[{ RowBox[{"ResourceFunction", "[", "\"\\"", "]"}], "[", "rxy", "]"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (2)) \ In[10]:=",ExpressionUUID->"ba6da336-4ecb-4a78-a9c4-268a23b56f30"] }, Open ]], Cell[CellGroupData[{ Cell["CAD over 1/8", "Subsubsection",ExpressionUUID->"29fd82b1-bbca-44e3-9e21-c5b21b85ae0c"], Cell[BoxData[ RowBox[{"reg", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "&&", RowBox[{"0", "<", "y", "<", "x"}]}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[4]:=",ExpressionUUID->"52b5572a-d521-4dcb-a6ab-c7e6b5f50451"], Cell[BoxData[ RowBox[{"cad", "=", RowBox[{"CylindricalDecomposition", "[", RowBox[{"reg", ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[5]:=",ExpressionUUID->"2471bcd0-c826-4623-803e-e373b6949125"], Cell[BoxData[ RowBox[{"8", FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]], "Input",Exp\ ressionUUID->"98c3563d-ecda-40f2-bce4-0b9a47332050"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"rxyz", "=", RowBox[{"8", FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]], RowBox[{"Boole", "[", "cad", "]"}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", RowBox[{"FullRegion", "[", "3", "]"}]}]}], "]"}], "vol"]}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"8133b234-a71d-4e9f-9e62-\ 6a97a55dd0c3"], Cell[BoxData[ RowBox[{"N", "[", RowBox[{"rxyz", ",", "20"}], "]"}]], "Input",ExpressionUUID->"f5028cc1-4e21-\ 47ae-9909-9e7fc97b0046"], Cell[BoxData[ RowBox[{"rxysimp1", "=", RowBox[{ RowBox[{"LogSimplify", "[", "rxy", "]"}], "//", "FullSimplify"}]}]], "Input",ExpressionUUID->"e62d826d-7525-4922-916b-\ d3866d5b507e"] }, Open ]], Cell[CellGroupData[{ Cell["Boole Integrate doing z integral first", "Subsubsection",ExpressionUUID->"04ce0091-6251-4108-8c7c-38206c60788a"], Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"ymin", ",", "ymax"}], "}"}], ",", RowBox[{"{", RowBox[{"zmin", ",", "zmax"}], "}"}]}], "}"}], "=", RowBox[{"CoordinateBounds", "[", "p", "]"}]}]], "Input",ExpressionUUID->\ "a70b8819-ea36-4b67-aad9-149fbf0d8a5e"], Cell[BoxData[ RowBox[{"ineq", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}], "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[11]:=",ExpressionUUID->"7945ae7c-125d-43c9-bd85-3a231c417100"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i1", "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Boole", "[", "ineq", "]"}], SqrtBox[ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}]]}], ",", RowBox[{"{", RowBox[{"z", ",", "zmin", ",", "zmax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"53a366e1-e9f4-4243-996c-\ e571d2b730f3"], Cell[BoxData[ RowBox[{"NIntegrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]], "Input", CellLabel-> "(byblis65 V13.2.0) \ In[9]:=",ExpressionUUID->"6fad7799-c5ee-469d-9e78-f7040c7531d3"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"i2", "=", RowBox[{"Integrate", "[", RowBox[{ FractionBox["i1", "vol"], ",", RowBox[{"{", RowBox[{"x", ",", "xmin", ",", "xmax"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "ymin", ",", "ymax"}], "}"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input",ExpressionUUID->"a47f2326-687d-4444-a496-\ bc621422adc2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MeanSquareSphericalRadius", "Subsection",ExpressionUUID->"2ec93757-9eb3-4688-8a59-4a6af439693b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input",\ CellLabel-> "(V14.0.0-Devel (1)) \ In[14]:=",ExpressionUUID->"c9a68536-59e3-462c-a882-6fe2ffb316dc"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.942\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.94151405323556680571073229657486081123`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "335973295201"}], "-", RowBox[{"13525179185280", " ", "#1"}], "+", RowBox[{"36744783040000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"917523349504000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"584913838080000", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"749289472000000", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"2607775744000000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"183500800000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"222822400000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.9415140532355668}, "NumericalApproximation"], Root[-335973295201 - 13525179185280 # + 36744783040000 #^2 + 917523349504000 #^3 + 584913838080000 #^4 + 749289472000000 #^5 - 2607775744000000 #^6 - 183500800000000 #^7 + 222822400000000 #^8& , 5, 0]]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[14]=",ExpressionUUID->"8a3e9c6b-792b-4ead-bf29-a267de5d530a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[15]:=",ExpressionUUID->"d62929a9-d8f7-4672-9c56-d9df14f8d291"], Cell[BoxData["0.9415140532355668`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[15]=",ExpressionUUID->"be5db51b-d3ab-44ad-86cc-e068427cee36"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FractionBox[ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[16]:=",ExpressionUUID->"fb7b88fe-6d27-497f-9ce6-6fd9b88abc11"], Cell[BoxData["0.9415140532355656`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[16]=",ExpressionUUID->"3dea003d-7d14-4cd0-9427-e8795b9a0b0f"] }, Open ]], Cell[CellGroupData[{ Cell["Integrate over polyhedron", "Subsubsection",ExpressionUUID->"9362d5c0-4b85-47eb-9f3f-9d026fefc09c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"(", RowBox[{"rxy2", "=", RowBox[{ FractionBox[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ",", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "p"}]}], "]"}], "vol"], "//", "FullSimplify"}]}], ")"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[17]:=",ExpressionUUID->"a6fe919d-d3c3-441c-9d64-69fc1f8b6b9d"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.942\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.94151405323556680571073229657486081123`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "335973295201"}], "-", RowBox[{"13525179185280", " ", "#1"}], "+", RowBox[{"36744783040000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"917523349504000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"584913838080000", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"749289472000000", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"2607775744000000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"183500800000000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"222822400000000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 0.9415140532355668}, "NumericalApproximation"], Root[-335973295201 - 13525179185280 # + 36744783040000 #^2 + 917523349504000 #^3 + 584913838080000 #^4 + 749289472000000 #^5 - 2607775744000000 #^6 - 183500800000000 #^7 + 222822400000000 #^8& , 5, 0]]], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[17]=",ExpressionUUID->"26a0fb24-bdaa-45c2-88a7-0dd59f5bcea3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "rxy2", "]"}]], "Input", CellLabel-> "(V14.0.0-Devel (1)) \ In[18]:=",ExpressionUUID->"5067710a-19cb-4c11-9386-434ecb7681b6"], Cell[BoxData["0.9415140532355668`"], "Output", CellLabel-> "(V14.0.0-Devel (1)) \ Out[18]=",ExpressionUUID->"2e974a37-9e2c-4ede-8370-e1e51f7fef2c"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Midsphere", "Subsection",ExpressionUUID->"297887c8-4409-43b7-b902-a56f4bd0b08d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"sphere", "=", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[111]:=",ExpressionUUID->"c7657c97-7b54-411f-9d2c-5aa471125503"], Cell[BoxData[ RowBox[{"Missing", "[", "\<\"NotApplicable\"\>", "]"}]], "Output", CellLabel-> "Out[111]=",ExpressionUUID->"9f6c7b79-cbfe-4581-8a1b-b0d661952234"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"sphere", "=", RowBox[{"Midsphere", "[", "p", "]"}]}], ")"}], "//", "Timing"}]], "Input",\ CellLabel-> "In[112]:=",ExpressionUUID->"89fae154-b827-4fe0-8c4e-38c733e28a0a"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.918814`", ",", RowBox[{"{", "}"}]}], "}"}]], "Output", CellLabel-> "Out[112]=",ExpressionUUID->"63895ebc-14f9-4208-8b0c-ad989e571d10"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["SurfaceArea", "Subsection",ExpressionUUID->"a0548945-4d6f-434b-a9a3-46befce92396"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[113]:=",ExpressionUUID->"1f74bb24-0cd1-4743-9b6f-a1efa37d242d"], Cell[BoxData[ RowBox[{"10", "+", RowBox[{"6", " ", SqrtBox["3"]}]}]], "Output", CellLabel-> "Out[113]=",ExpressionUUID->"f4d8770a-6324-4016-b68e-77f8b1cc1c28"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"SurfaceArea", "[", "p", "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[115]:=",ExpressionUUID->"68ed03df-6799-4d00-a335-a09b329d9fbb"], Cell[BoxData[ RowBox[{"{", RowBox[{"7.595038`", ",", RowBox[{"10", "+", RowBox[{"6", " ", SqrtBox["3"]}]}]}], "}"}]], "Output", CellLabel-> "Out[115]=",ExpressionUUID->"a98afb4b-b8d9-49f2-843e-def6c836340e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Total", "[", RowBox[{"Area", "/@", RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]}], "]"}], "//", "RootReduce"}], "//", "Timing"}]], "Input", CellLabel-> "In[116]:=",ExpressionUUID->"285972fd-cd01-4255-8323-3f28e92bcda3"], Cell[BoxData[ RowBox[{"{", RowBox[{"38.347541`", ",", RowBox[{"10", "+", RowBox[{"6", " ", SqrtBox["3"]}]}]}], "}"}]], "Output", CellLabel-> "Out[116]=",ExpressionUUID->"ba56bece-f9a5-4eb8-980f-614e6958d901"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["VertexSubsetHulls", "Subsection",ExpressionUUID->"71e95632-71fc-4b5f-af70-e71baacb6d48"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[117]:=",ExpressionUUID->"a49fda24-632c-47e2-acd3-b91ba48cd0eb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"\<\"Antiprism\"\>", ",", "8"}], "}"}], "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "3", ",", "4", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22"}], "}"}], "}"}]}], ",", RowBox[{"\<\"GyroelongatedSquareBicupola\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}], "}"}]}], ",", RowBox[{"\<\"GyroelongatedSquareCupola\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "4", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"SquareCupola\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "5", ",", "6", ",", "9", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "4", ",", "7", ",", "8", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "23", ",", "24"}], "}"}]}], "}"}]}]}], "}"}]], "Output", CellLabel-> "Out[117]=",ExpressionUUID->"9fa1cdd5-f06e-4688-bbf0-e957ea7a8f5b"] }, Open ]], Cell[CellGroupData[{ Cell["Platonic", "Subsubsection",ExpressionUUID->"a38e6152-5dc2-4148-b5bf-bdee38909557"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"h", "=", RowBox[{"VertexSubsetHulls", "[", RowBox[{"p", ",", "\"\\"", ",", RowBox[{"\"\\"", "\[Rule]", RowBox[{"{", "}"}]}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[118]:=",ExpressionUUID->"7e60831c-1ad1-4ecf-b14a-5dd92f135e76"], Cell[CellGroupData[{ Cell[BoxData["\<\"Finding equilateral triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"0f05d90e-18d4-42c9-895e-b8da8614ba47"], Cell[BoxData["\<\"Finding potential tetrahedra from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"d391dfc1-2513-4ad5-9cb7-fac8a5e47af6"], Cell[BoxData["\<\"Finding tetrahedra from potential candidates...\"\>"], \ "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"3ac27770-858a-41f7-9a3e-54a1051ccb14"], Cell[BoxData["\<\"Finding cubes from tetrahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"2b8b4ecd-0785-469d-8ff7-b256821684ac"], Cell[BoxData["\<\"Finding dodecahedron from cubes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"6ae3255c-037b-4021-942f-83177704fbf5"], Cell[BoxData["\<\"Finding octahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"a0525fd7-cafb-404f-a2d2-358d1f376b21"], Cell[BoxData["\<\"Finding dodecahedra from octahedra...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"ab252536-24d4-4f82-9078-e081ce9fa195"], Cell[BoxData["\<\"Finding icosahedra by building up from equilateral \ triangles...\"\>"], "Print", CellLabel-> "During evaluation of \ In[118]:=",ExpressionUUID->"8b6c35a8-b461-4588-9ea4-558c129858c3"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"1.859862`", ",", RowBox[{"{", "}"}]}], "}"}]], "Output", CellLabel-> "Out[118]=",ExpressionUUID->"af7a0518-79d8-4053-bc8e-1767f9414eda"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Volume", "Subsection",ExpressionUUID->"d15e4e80-8ba5-46ff-8cef-b8293bbdf677"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"pname", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[119]:=",ExpressionUUID->"1ac987c3-1dad-4ce6-9683-ea0acae938c6"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"8.15\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 8.15357483362126345127762760967016220093`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 8.153574833621263}, "NumericalApproximation"], Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 + 594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output", CellLabel-> "Out[119]=",ExpressionUUID->"6d824cd1-de83-4c55-a763-743af1d65ca7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Volume", "[", "p", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[120]:=",ExpressionUUID->"a142dd49-5646-4783-ba54-60254d03125b"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"8.15\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 8.15357483362126345127762760967016220093`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 8.153574833621263}, "NumericalApproximation"], Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 + 594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output", CellLabel-> "Out[120]=",ExpressionUUID->"dad10d8c-d4d8-4743-a0a9-4eb375035e28"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronVolume", "[", RowBox[{"p", ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[121]:=",ExpressionUUID->"108519e2-21e6-4fea-b60d-e46084dea4f7"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"8.15\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 8.15357483362126345127762760967016220093`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 8.153574833621263}, "NumericalApproximation"], Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 + 594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output", CellLabel-> "Out[121]=",ExpressionUUID->"c67ed878-8fde-489e-b001-7d81d23ef49d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ToRadicals", "[", "%", "]"}]], "Input", CellLabel-> "In[122]:=",ExpressionUUID->"c0c6a145-cc78-4032-9d8a-d4cc13def35d"], Cell[BoxData[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"8.15\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 8.15357483362126345127762760967016220093`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 8.153574833621263}, "NumericalApproximation"], Root[4352 - 119808 # + 246528 #^2 + 1569024 #^3 - 552096 #^4 - 1384128 #^5 + 594864 #^6 - 104976 #^7 + 6561 #^8& , 6, 0]]], "Output", CellLabel-> "Out[122]=",ExpressionUUID->"7782eaf7-2d7a-446a-8e70-2dab85fac3c1"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Perspective projections", "Section",ExpressionUUID->"fe49d574-16bb-4638-bbcd-a69874c61c8b"], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellLabel->"In[45]:=",ExpressionUUID->"42848649-95f7-4bac-831b-6d45d5e0c0e1"], Cell[CellGroupData[{ Cell["XXX", "Subsection",ExpressionUUID->"ea65f44f-5f7e-41d0-aa20-768cd3d0c930"], Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ","}], "]"}]], "Input",ExpressionUUID->"fb176fb3-1c77-47a5-a612-85ac11687604"] }, Open ]] }, Closed]] }, Open ]] }, InitializationCellEvaluation->Automatic, WindowSize->{1011, 862}, WindowMargins->{{-1158, Automatic}, {Automatic, -175}}, FrontEndVersion->"14.0 for Mac OS X ARM (64-bit) (September 6, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"e212e72e-1187-4858-b46e-09cc2bf9c735" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 101, 0, 98, "Title",ExpressionUUID->"bebbcba6-4d33-403d-85bd-1522d079e6c6"], Cell[CellGroupData[{ Cell[706, 26, 83, 0, 54, "Subsection",ExpressionUUID->"8e392c9b-7a17-4c1b-b617-0ae4f5a4f844"], Cell[792, 28, 115, 3, 58, "Text",ExpressionUUID->"6115558e-c9f2-4e22-9496-a3359153a31a"], Cell[910, 33, 362, 9, 35, "Text",ExpressionUUID->"8b296164-cf90-419b-8329-8679bff0bb47"], Cell[1275, 44, 389, 11, 35, "Text",ExpressionUUID->"dd88aca0-1949-4a2e-9977-b3098de66d57"], Cell[1667, 57, 154, 2, 35, "Text",ExpressionUUID->"fbdbf9bb-7b02-4f6a-9378-199f9c3015ae"] }, Open ]], Cell[CellGroupData[{ Cell[1858, 64, 79, 0, 67, "Section",ExpressionUUID->"61bf3932-5a3f-4999-9cc3-259f1988049b"], Cell[CellGroupData[{ Cell[1962, 68, 228, 5, 30, "Input",ExpressionUUID->"2116699a-8443-4a22-8a5b-fb6fd15651ee"], Cell[2193, 75, 159, 2, 34, "Output",ExpressionUUID->"2a2fa0d9-43e9-4bf3-9511-f805ecdc036e"] }, Open ]], Cell[CellGroupData[{ Cell[2389, 82, 183, 3, 30, "Input",ExpressionUUID->"be6bf588-3b8a-4eab-9e23-300a9680fcfa"], Cell[2575, 87, 29503, 504, 377, 6854, 132, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"36cc2567-0b81-481d-b40a-8713a3328dc4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[32127, 597, 77, 0, 67, "Section",ExpressionUUID->"1dc60f21-6afa-4681-8107-f8d76a37175b"], Cell[CellGroupData[{ Cell[32229, 601, 216, 4, 30, "Input",ExpressionUUID->"05ef11ec-fc4c-4f36-befa-2816fb10225b"], Cell[32448, 607, 3637, 59, 310, "Output",ExpressionUUID->"abb24f3d-ad21-442b-b0c8-9200e9103072"] }, Open ]], Cell[CellGroupData[{ Cell[36122, 671, 244, 5, 30, "Input",ExpressionUUID->"aa765a36-5044-471a-a4ca-40ff833c3213"], Cell[36369, 678, 3695, 61, 310, "Output",ExpressionUUID->"74d69a86-a0fc-461f-97c1-c463aa3ebd6e"] }, Open ]], Cell[40079, 742, 304, 7, 52, "Input",ExpressionUUID->"83d44b12-9bb3-4b70-9c72-2085a9444744"] }, Closed]], Cell[CellGroupData[{ Cell[40420, 754, 84, 0, 53, "Section",ExpressionUUID->"9b411472-7b76-40a8-a78e-f7168fc07679"], Cell[CellGroupData[{ Cell[40529, 758, 94, 0, 45, "Subsubsection",ExpressionUUID->"ddd7fc29-4d9b-4c37-8194-5badf2f115af"], Cell[40626, 760, 167, 4, 44, "Input",ExpressionUUID->"0fa9fcb6-0efc-420a-aecc-2b41b8070016"], Cell[CellGroupData[{ Cell[40818, 768, 302, 8, 44, "Input",ExpressionUUID->"90903ef4-62ea-4c29-a716-ba9e9d565ab2"], Cell[41123, 778, 34965, 680, 75, "Output",ExpressionUUID->"cb713d8a-1cf4-4b5d-aade-afb5d0d003b5"] }, Open ]], Cell[CellGroupData[{ Cell[76125, 1463, 236, 6, 44, "Input",ExpressionUUID->"8eed6608-7173-4f20-a1cb-ee12f29af13a"], Cell[76364, 1471, 1495, 38, 55, "Output",ExpressionUUID->"97374caa-daec-40b0-abe5-6d21fde01595"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[77908, 1515, 85, 0, 54, "Subsection",ExpressionUUID->"461cee03-1522-4810-a1ac-0e6479e2550a"], Cell[CellGroupData[{ Cell[78018, 1519, 710, 18, 73, "Input",ExpressionUUID->"28b9483a-e3dc-486e-85e9-bf1daafbbf79"], Cell[78731, 1539, 7145, 140, 388, "Output",ExpressionUUID->"16f21f9b-8a9f-43f3-8e32-501abb2695c2"] }, Closed]], Cell[CellGroupData[{ Cell[85913, 1684, 188, 3, 26, "Input",ExpressionUUID->"97629861-28c2-4203-af68-5b9bc263a9d7"], Cell[86104, 1689, 162, 3, 34, "Output",ExpressionUUID->"2990f2a5-09aa-4b47-bce9-5c97faf44737"] }, Open ]], Cell[CellGroupData[{ Cell[86303, 1697, 214, 5, 30, "Input",ExpressionUUID->"28900788-41c5-44cd-b444-cf0b479d7898"], Cell[86520, 1704, 220, 5, 34, "Output",ExpressionUUID->"96e1f0a5-444f-4e64-ba04-8e4f30229c93"] }, Open ]], Cell[CellGroupData[{ Cell[86777, 1714, 218, 5, 30, "Input",ExpressionUUID->"1e802fe8-6820-422a-b5b9-8b2eebe9c1ad"], Cell[86998, 1721, 220, 5, 34, "Output",ExpressionUUID->"735b78b0-32b6-4e49-b6cf-5a79084a5df4"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[87267, 1732, 89, 0, 38, "Subsection",ExpressionUUID->"a7436b9d-7607-4cf6-9986-6151c8440e8f"], Cell[CellGroupData[{ Cell[87381, 1736, 192, 3, 30, "Input",ExpressionUUID->"010b98df-0bb5-4eff-9771-65a50fc2a347"], Cell[87576, 1741, 160, 2, 34, "Output",ExpressionUUID->"fcfe9a61-9dd2-4e7d-9897-5b16ef0b8b8a"] }, Open ]], Cell[CellGroupData[{ Cell[87773, 1748, 144, 2, 30, "Input",ExpressionUUID->"62f11410-a72a-4518-bde9-fca0d19f01ac"], Cell[87920, 1752, 4794, 69, 206, "Message",ExpressionUUID->"5da21f9b-5cf0-4f9a-9ee9-ad10f72e8e18"], Cell[92717, 1823, 36103, 693, 61, "Output",ExpressionUUID->"5ddcae32-484e-4e6c-9cb7-20fbea33da6f"] }, Open ]], Cell[CellGroupData[{ Cell[128857, 2521, 232, 6, 30, "Input",ExpressionUUID->"fb80f845-33fc-4f3f-9bf2-a0191b9ee7b0"], Cell[129092, 2529, 179, 4, 34, "Output",ExpressionUUID->"d8c536fa-f2c0-4824-a9a6-abffa088aa29"] }, Open ]], Cell[129286, 2536, 376, 11, 30, "Input",ExpressionUUID->"f19f4681-eb11-4dfd-9dd3-4e3eba746714"] }, Closed]], Cell[CellGroupData[{ Cell[129699, 2552, 83, 0, 38, "Subsection",ExpressionUUID->"347d361f-31de-4d09-ba22-a33c4588c88d"], Cell[CellGroupData[{ Cell[129807, 2556, 149, 2, 30, "Input",ExpressionUUID->"368c0d72-0970-4c98-8ae5-82199e94dbbd"], Cell[129959, 2560, 110, 1, 34, "Output",ExpressionUUID->"48068cbc-aed9-42ce-b85f-899d2356ea27"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[130118, 2567, 91, 0, 38, "Subsection",ExpressionUUID->"ccacc236-b65c-4e36-8255-0671356d087e"], Cell[CellGroupData[{ Cell[130234, 2571, 226, 5, 30, "Input",ExpressionUUID->"f6836771-30ad-4e68-95a4-1779abe887ef"], Cell[130463, 2578, 2936, 85, 123, "Output",ExpressionUUID->"e6f50e28-fb81-46bc-a462-9b9a34b5a50b"] }, Open ]], Cell[CellGroupData[{ Cell[133436, 2668, 213, 5, 30, "Input",ExpressionUUID->"664a95f2-e83b-48d3-a4f3-87a45a5ac2cd"], Cell[133652, 2675, 114, 1, 34, "Output",ExpressionUUID->"c9af5b26-078c-4ad3-a11d-350dcffd8d19"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[133815, 2682, 88, 0, 38, "Subsection",ExpressionUUID->"d7082a99-407b-49aa-b4c6-4dff82912c71"], Cell[CellGroupData[{ Cell[133928, 2686, 191, 3, 30, "Input",ExpressionUUID->"2c2e4261-9f46-4ada-bbe1-96e5702e9dce"], Cell[134122, 2691, 129, 2, 34, "Output",ExpressionUUID->"36ae2e6f-6efd-4dfe-9e83-a98d46092d32"] }, Open ]], Cell[CellGroupData[{ Cell[134288, 2698, 433, 11, 52, "Input",ExpressionUUID->"66712797-64c5-4ca5-b5e6-da908e51cc56"], Cell[134724, 2711, 129, 2, 34, "Output",ExpressionUUID->"972cfda9-1ae9-47fd-bf37-d00bef2df8c6"] }, Open ]] }, Closed]], Cell[134880, 2717, 82, 0, 38, "Subsection",ExpressionUUID->"940321c0-d329-4895-b0f3-bacf14d64abd"], Cell[CellGroupData[{ Cell[134987, 2721, 96, 0, 38, "Subsection",ExpressionUUID->"ad514590-121e-490c-9b0b-06d3c3c69a90"], Cell[CellGroupData[{ Cell[135108, 2725, 199, 3, 30, "Input",ExpressionUUID->"88582903-ac25-4e6e-a578-2a95ffc978df"], Cell[135310, 2730, 223, 7, 40, "Output",ExpressionUUID->"164e2099-ef7f-46ed-8cbb-8b359a7f001e"] }, Open ]], Cell[CellGroupData[{ Cell[135570, 2742, 218, 5, 30, "Input",ExpressionUUID->"09f00f63-7fe6-4f84-8bdb-922bebe7e0c8"], Cell[135791, 2749, 223, 7, 40, "Output",ExpressionUUID->"dc986d5b-8e31-4cb5-9399-a20d4fc1b357"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[136063, 2762, 90, 0, 38, "Subsection",ExpressionUUID->"46e9b3c3-8bb3-4f31-a2eb-5658dd8a4c89"], Cell[CellGroupData[{ Cell[136178, 2766, 193, 3, 30, "Input",ExpressionUUID->"32b5449c-267d-47dc-8eb0-efb42f174ed1"], Cell[136374, 2771, 5328, 123, 42, "Output",ExpressionUUID->"632575fc-7063-4e4a-8d2e-26a7ad7683dc"] }, Open ]], Cell[CellGroupData[{ Cell[141739, 2899, 362, 10, 49, "Input",ExpressionUUID->"26da62fd-ba04-4030-963b-33c964101e8b"], Cell[142104, 2911, 114, 1, 34, "Output",ExpressionUUID->"fa6e7333-d9af-4b5b-9530-9d23b6a6a558"] }, Open ]], Cell[CellGroupData[{ Cell[142255, 2917, 187, 4, 30, "Input",ExpressionUUID->"7a123ed0-379c-43a3-adaa-9f6c3ae17a2f"], Cell[142445, 2923, 114, 1, 34, "Output",ExpressionUUID->"0227c32a-6615-4ca0-a9dd-7f05918017f2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[142608, 2930, 85, 0, 38, "Subsection",ExpressionUUID->"55152c01-243a-4fce-865a-751417b3ca79"], Cell[CellGroupData[{ Cell[142718, 2934, 188, 3, 30, "Input",ExpressionUUID->"b80d0586-ea9d-4794-af9d-9a39a7324e1f"], Cell[142909, 2939, 160, 2, 34, "Output",ExpressionUUID->"5867cb8c-ebd1-45b8-9741-4d5a1895cb3b"] }, Open ]], Cell[CellGroupData[{ Cell[143106, 2946, 144, 3, 30, "Input",ExpressionUUID->"180f9203-318e-4dcc-8bdd-c05cd1afbb7f"], Cell[143253, 2951, 4788, 69, 206, "Message",ExpressionUUID->"72819d0e-28a5-417d-be56-387cab3221ab"], Cell[148044, 3022, 36103, 694, 61, "Output",ExpressionUUID->"d5c0aba9-200c-4baa-8c2b-40583fd2e0ab"] }, Open ]], Cell[CellGroupData[{ Cell[184184, 3721, 174, 4, 30, "Input",ExpressionUUID->"b2e624ef-92ab-495e-956b-fcbaa1078723"], Cell[184361, 3727, 128, 3, 34, "Output",ExpressionUUID->"c416270e-a452-480b-8fce-1283f492c183"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[184538, 3736, 132, 2, 38, "Subsection",ExpressionUUID->"a322f0f4-a333-42f0-b34a-293ced2d3a19"], Cell[CellGroupData[{ Cell[184695, 3742, 225, 5, 44, "Input",ExpressionUUID->"da471ebf-d216-4722-8f74-7c051523ea63"], Cell[184923, 3749, 183, 4, 48, "Output",ExpressionUUID->"b1ab2dec-0b69-441e-9e31-ae1338eec582"] }, Open ]], Cell[185121, 3756, 109, 1, 30, "Input",ExpressionUUID->"a0c4e92c-3a30-4944-934d-c87591878765"], Cell[CellGroupData[{ Cell[185255, 3761, 410, 14, 72, "Input",ExpressionUUID->"61ee1fc1-4709-4600-8baa-879a22765491"], Cell[185668, 3777, 473, 10, 46, "Message",ExpressionUUID->"4f2fa515-3c66-4019-9a38-bf2257259d7f"], Cell[186144, 3789, 150, 3, 48, "Output",ExpressionUUID->"cf005891-bb0c-48c0-89ec-84bfa3247a2b"] }, Open ]], Cell[CellGroupData[{ Cell[186331, 3797, 185, 4, 44, "Input",ExpressionUUID->"91d75801-316a-4556-aadf-7918dafa2b07"], Cell[186519, 3803, 342, 8, 24, "Print",ExpressionUUID->"2fe7f33a-8b10-4708-bcb5-3a1f69d8eec4"], Cell[186864, 3813, 138, 3, 48, "Output",ExpressionUUID->"feafd3a3-3e41-4955-960c-0a9d6c10a6c8"] }, Open ]], Cell[CellGroupData[{ Cell[187039, 3821, 105, 0, 45, "Subsubsection",ExpressionUUID->"13cc068b-c00c-4a41-8299-44b6652a2a78"], Cell[187147, 3823, 479, 15, 70, "Input",ExpressionUUID->"d8a18726-eabe-4f9b-a2e8-bf77dc161d6b"], Cell[187629, 3840, 111, 1, 30, "Input",ExpressionUUID->"4bd0adaf-eff3-4c8b-b90f-ec3a8d0d037c"] }, Open ]], Cell[CellGroupData[{ Cell[187777, 3846, 155, 2, 45, "Subsubsection",ExpressionUUID->"e4bb7f00-b936-4c00-a965-e7fe64e69941"], Cell[CellGroupData[{ Cell[187957, 3852, 402, 11, 44, "Input",ExpressionUUID->"3de79123-5aca-4f8c-a446-f6ff676b9c05"], Cell[CellGroupData[{ Cell[188384, 3867, 667, 17, 44, "Print",ExpressionUUID->"606a03c7-4c80-491e-9dc5-49f6249c6854"], Cell[189054, 3886, 182, 3, 24, "Print",ExpressionUUID->"38bc660b-d328-478a-85d3-94e644f64436"], Cell[189239, 3891, 197, 5, 24, "Print",ExpressionUUID->"aba4e28e-c5c0-4e98-a765-6babfda4cd2c"], Cell[189439, 3898, 169, 3, 24, "Print",ExpressionUUID->"e442316d-272a-48d0-903b-6ade44d7d4d4"], Cell[189611, 3903, 1517, 59, 53, "Print",ExpressionUUID->"ae357bab-a6f7-4c44-a33e-d83472ff6a0d"], Cell[191131, 3964, 175, 3, 24, "Print",ExpressionUUID->"43cb2ae9-a73d-4efe-8594-330cc58880b7"], Cell[191309, 3969, 6095, 163, 137, "Print",ExpressionUUID->"4853770c-b2fc-4c6e-ad7b-ee78b4e5fb94"], Cell[197407, 4134, 184, 3, 24, "Print",ExpressionUUID->"6be283a5-62ab-4221-9a43-5ab73603000c"], Cell[197594, 4139, 5073, 148, 137, "Print",ExpressionUUID->"a74a853a-8da7-42d4-b026-cbf6a049f038"] }, Open ]], Cell[202682, 4290, 139, 3, 48, "Output",ExpressionUUID->"1e253cad-0975-46b8-a8a2-b830bb987537"] }, Open ]], Cell[CellGroupData[{ Cell[202858, 4298, 160, 4, 44, "Input",ExpressionUUID->"b88f8665-e10c-47ef-8f90-389e325030cd"], Cell[203021, 4304, 134, 3, 48, "Output",ExpressionUUID->"0d7542cb-3492-462b-a9d7-be31ad4380a9"] }, Open ]], Cell[203170, 4310, 158, 3, 30, "Input",ExpressionUUID->"125e8db2-2141-4c7d-a991-446fe907dd1f"] }, Closed]], Cell[CellGroupData[{ Cell[203365, 4318, 83, 0, 37, "Subsubsection",ExpressionUUID->"c0dd0f8c-d09d-41f7-a379-b204f1693ad8"], Cell[203451, 4320, 77, 0, 35, "Text",ExpressionUUID->"a9392263-2106-40f6-b238-ef663f6849f2"], Cell[203531, 4322, 481, 13, 44, "Input",ExpressionUUID->"b72aa733-111e-4d1c-9b26-435a4af3363d"], Cell[204015, 4337, 461, 14, 58, "Input",ExpressionUUID->"3775b55e-e447-4ad8-a3f8-549ccfec6eda"], Cell[204479, 4353, 579, 18, 70, "Input",ExpressionUUID->"8c6b46c1-7659-405b-8ee6-2f128e976a13"] }, Open ]], Cell[CellGroupData[{ Cell[205095, 4376, 93, 0, 45, "Subsubsection",ExpressionUUID->"8849a97d-698f-4368-9c56-ad3c247e46eb"], Cell[CellGroupData[{ Cell[205213, 4380, 451, 12, 44, "Input",ExpressionUUID->"63332d69-1032-4731-ab1e-685f35222a6d"], Cell[205667, 4394, 15250, 458, 254, "Output",ExpressionUUID->"1655042a-c7c9-4f80-87a1-0f6ee36e88e1"] }, Open ]], Cell[220932, 4855, 77, 0, 35, "Text",ExpressionUUID->"ac912842-f802-4831-990f-7fbd974d0e50"], Cell[221012, 4857, 321, 9, 44, "Input",ExpressionUUID->"d8e3c1a6-19d6-47a3-84f1-9b4de49e6669"], Cell[221336, 4868, 537, 17, 72, "Input",ExpressionUUID->"ab1b6b6d-b3e6-40e0-bede-6fff20928f13"], Cell[221876, 4887, 658, 21, 84, "Input",ExpressionUUID->"99182a96-2712-48fe-af1d-d37d92528519"], Cell[222537, 4910, 111, 1, 30, "Input",ExpressionUUID->"405909af-aac4-459e-b1bc-029a1238e5c4"], Cell[222651, 4913, 158, 3, 30, "Input",ExpressionUUID->"b9c1a8e4-493b-4cdf-916f-356f1060e49a"] }, Open ]], Cell[CellGroupData[{ Cell[222846, 4921, 118, 0, 45, "Subsubsection",ExpressionUUID->"e2da23e2-7784-49d7-b2cb-a85e22289786"], Cell[222967, 4923, 378, 11, 30, "Input",ExpressionUUID->"b13fec0e-5fa2-4b24-a740-b71fb2888dfb"], Cell[223348, 4936, 309, 8, 44, "Input",ExpressionUUID->"4430d2f6-8dbf-445d-af78-5fe581b8d7af"], Cell[223660, 4946, 514, 17, 54, "Input",ExpressionUUID->"89a0603b-793f-4ae2-9bf0-d2a4de6fd6f9"], Cell[224177, 4965, 353, 10, 61, "Input",ExpressionUUID->"57801585-cd3e-4554-a7cb-77a31fe2802a"], Cell[224533, 4977, 407, 12, 47, "Input",ExpressionUUID->"9336af2c-6037-47ad-926e-16df8c6f92a3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[224989, 4995, 104, 0, 38, "Subsection",ExpressionUUID->"d41d431e-199d-496a-b5a7-a6ab9133be29"], Cell[CellGroupData[{ Cell[225118, 4999, 234, 6, 44, "Input",ExpressionUUID->"97c620e3-bd59-4d95-86be-98db38cb24bf"], Cell[225355, 5007, 1589, 39, 55, "Output",ExpressionUUID->"0f87bfaa-d48c-4f70-9010-026d5b3be371"] }, Open ]], Cell[CellGroupData[{ Cell[226981, 5051, 157, 4, 44, "Input",ExpressionUUID->"1090a92b-b2af-4a70-957c-9632cca6b905"], Cell[227141, 5057, 149, 3, 48, "Output",ExpressionUUID->"2bb6502a-0f51-4652-8312-898aae9a64ad"] }, Open ]], Cell[CellGroupData[{ Cell[227327, 5065, 392, 13, 66, "Input",ExpressionUUID->"ccccb30e-6f7f-442d-b43c-39d8cb0fa5dc"], Cell[227722, 5080, 149, 3, 48, "Output",ExpressionUUID->"2a7d1e18-e493-42cc-97d1-c6f72a25869b"] }, Open ]], Cell[CellGroupData[{ Cell[227908, 5088, 105, 0, 45, "Subsubsection",ExpressionUUID->"95593c03-1fc6-48cb-b836-4bd3e5ad9a0c"], Cell[CellGroupData[{ Cell[228038, 5092, 507, 16, 72, "Input",ExpressionUUID->"3729e4a1-a769-4ec3-b8d7-8c18906cc02f"], Cell[228548, 5110, 1590, 39, 55, "Output",ExpressionUUID->"491abb18-be40-4ded-a137-4981761c1da4"] }, Open ]], Cell[CellGroupData[{ Cell[230175, 5154, 161, 4, 44, "Input",ExpressionUUID->"974b8deb-2c37-4b31-b30e-041247e8e970"], Cell[230339, 5160, 150, 3, 48, "Output",ExpressionUUID->"bbd879e4-76cd-49a4-9824-228c00e79145"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[230550, 5170, 130, 2, 38, "Subsection",ExpressionUUID->"dbbb1119-4d06-4f7a-9047-16050fa0e15d"], Cell[CellGroupData[{ Cell[230705, 5176, 224, 5, 44, "Input",ExpressionUUID->"37d8f707-2a69-4b0f-97af-58c4dfb91211"], Cell[230932, 5183, 184, 4, 48, "Output",ExpressionUUID->"8cf98445-23ae-4f0e-bb43-5f2c2cbee165"] }, Open ]], Cell[CellGroupData[{ Cell[231153, 5192, 448, 15, 72, "Input",ExpressionUUID->"774b113b-dab7-4d74-a38c-ac6ee9aa1434"], Cell[231604, 5209, 150, 3, 48, "Output",ExpressionUUID->"43ecb4a3-b859-4e8c-89cd-619503ff9290"] }, Open ]], Cell[231769, 5215, 134, 1, 30, "Input",ExpressionUUID->"f56d09fa-8cde-4088-b9e8-c1fe843e0d8d"], Cell[CellGroupData[{ Cell[231928, 5220, 105, 0, 45, "Subsubsection",ExpressionUUID->"e7d641d2-d2e4-4ff2-a632-2191ba4b3686"], Cell[232036, 5222, 515, 16, 70, "Input",ExpressionUUID->"5ca87a80-cf9b-4b36-ae8b-b3d3bac561e3"], Cell[232554, 5240, 112, 1, 30, "Input",ExpressionUUID->"c4097a39-df83-4d4a-956a-856f393f597e"] }, Open ]], Cell[CellGroupData[{ Cell[232703, 5246, 98, 0, 45, "Subsubsection",ExpressionUUID->"38184e23-0072-468a-9fff-70cf2a30822c"], Cell[232804, 5248, 352, 8, 30, "Input",ExpressionUUID->"985f288a-b3a4-4e7d-9e08-f15b7d4fee82"], Cell[233159, 5258, 112, 1, 30, "Input",ExpressionUUID->"995b6c02-e70c-4a59-b556-a186caf521e6"], Cell[233274, 5261, 159, 3, 30, "Input",ExpressionUUID->"6dd8ee74-138b-4ca2-acf1-66b6fe00060c"] }, Open ]], Cell[CellGroupData[{ Cell[233470, 5269, 83, 0, 45, "Subsubsection",ExpressionUUID->"976307cc-bc63-4945-a2c7-5a9081146da6"], Cell[233556, 5271, 433, 10, 30, "Input",ExpressionUUID->"50541120-15e8-4729-8516-de23100830e4"], Cell[233992, 5283, 500, 15, 58, "Input",ExpressionUUID->"cd71902e-d781-4228-aed7-f641578f9e04"], Cell[234495, 5300, 622, 19, 70, "Input",ExpressionUUID->"cf595278-c041-4740-acd5-54f75a530a1b"], Cell[235120, 5321, 138, 3, 30, "Input",ExpressionUUID->"e7e9ab0a-35a6-4667-8626-5b8075a48b2f"], Cell[235261, 5326, 294, 8, 44, "Input",ExpressionUUID->"ba6da336-4ecb-4a78-a9c4-268a23b56f30"] }, Open ]], Cell[CellGroupData[{ Cell[235592, 5339, 93, 0, 45, "Subsubsection",ExpressionUUID->"29fd82b1-bbca-44e3-9e21-c5b21b85ae0c"], Cell[235688, 5341, 415, 11, 44, "Input",ExpressionUUID->"52b5572a-d521-4dcb-a6ab-c7e6b5f50451"], Cell[236106, 5354, 321, 9, 44, "Input",ExpressionUUID->"2471bcd0-c826-4623-803e-e373b6949125"], Cell[236430, 5365, 531, 16, 58, "Input",ExpressionUUID->"98c3563d-ecda-40f2-bce4-0b9a47332050"], Cell[236964, 5383, 656, 20, 70, "Input",ExpressionUUID->"8133b234-a71d-4e9f-9e62-6a97a55dd0c3"], Cell[237623, 5405, 138, 3, 30, "Input",ExpressionUUID->"f5028cc1-4e21-47ae-9909-9e7fc97b0046"], Cell[237764, 5410, 193, 5, 30, "Input",ExpressionUUID->"e62d826d-7525-4922-916b-d3866d5b507e"] }, Open ]], Cell[CellGroupData[{ Cell[237994, 5420, 118, 0, 45, "Subsubsection",ExpressionUUID->"04ce0091-6251-4108-8c7c-38206c60788a"], Cell[238115, 5422, 377, 11, 30, "Input",ExpressionUUID->"a70b8819-ea36-4b67-aad9-149fbf0d8a5e"], Cell[238495, 5435, 309, 8, 44, "Input",ExpressionUUID->"7945ae7c-125d-43c9-bd85-3a231c417100"], Cell[238807, 5445, 509, 16, 40, "Input",ExpressionUUID->"53a366e1-e9f4-4243-996c-e571d2b730f3"], Cell[239319, 5463, 353, 10, 61, "Input",ExpressionUUID->"6fad7799-c5ee-469d-9e78-f7040c7531d3"], Cell[239675, 5475, 407, 12, 47, "Input",ExpressionUUID->"a47f2326-687d-4444-a496-bc621422adc2"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[240131, 5493, 102, 0, 38, "Subsection",ExpressionUUID->"2ec93757-9eb3-4688-8a59-4a6af439693b"], Cell[CellGroupData[{ Cell[240258, 5497, 232, 6, 44, "Input",ExpressionUUID->"c9a68536-59e3-462c-a882-6fe2ffb316dc"], Cell[240493, 5505, 1694, 41, 55, "Output",ExpressionUUID->"8a3e9c6b-792b-4ead-bf29-a267de5d530a"] }, Open ]], Cell[CellGroupData[{ Cell[242224, 5551, 158, 4, 44, "Input",ExpressionUUID->"d62929a9-d8f7-4672-9c56-d9df14f8d291"], Cell[242385, 5557, 150, 3, 48, "Output",ExpressionUUID->"be5db51b-d3ab-44ad-86cc-e068427cee36"] }, Open ]], Cell[CellGroupData[{ Cell[242572, 5565, 430, 14, 66, "Input",ExpressionUUID->"fb7b88fe-6d27-497f-9ce6-6fd9b88abc11"], Cell[243005, 5581, 150, 3, 48, "Output",ExpressionUUID->"3dea003d-7d14-4cd0-9427-e8795b9a0b0f"] }, Open ]], Cell[CellGroupData[{ Cell[243192, 5589, 105, 0, 45, "Subsubsection",ExpressionUUID->"9362d5c0-4b85-47eb-9f3f-9d026fefc09c"], Cell[CellGroupData[{ Cell[243322, 5593, 547, 17, 72, "Input",ExpressionUUID->"a6fe919d-d3c3-441c-9d64-69fc1f8b6b9d"], Cell[243872, 5612, 1694, 41, 55, "Output",ExpressionUUID->"26a0fb24-bdaa-45c2-88a7-0dd59f5bcea3"] }, Open ]], Cell[CellGroupData[{ Cell[245603, 5658, 161, 4, 44, "Input",ExpressionUUID->"5067710a-19cb-4c11-9386-434ecb7681b6"], Cell[245767, 5664, 150, 3, 48, "Output",ExpressionUUID->"2e974a37-9e2c-4ede-8370-e1e51f7fef2c"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[245978, 5674, 86, 0, 38, "Subsection",ExpressionUUID->"297887c8-4409-43b7-b902-a56f4bd0b08d"], Cell[CellGroupData[{ Cell[246089, 5678, 222, 5, 30, "Input",ExpressionUUID->"c7657c97-7b54-411f-9d2c-5aa471125503"], Cell[246314, 5685, 164, 3, 34, "Output",ExpressionUUID->"9f6c7b79-cbfe-4581-8a1b-b0d661952234"] }, Open ]], Cell[CellGroupData[{ Cell[246515, 5693, 230, 7, 30, "Input",ExpressionUUID->"89fae154-b827-4fe0-8c4e-38c733e28a0a"], Cell[246748, 5702, 183, 5, 34, "Output",ExpressionUUID->"63895ebc-14f9-4208-8b0c-ad989e571d10"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[246980, 5713, 88, 0, 38, "Subsection",ExpressionUUID->"a0548945-4d6f-434b-a9a3-46befce92396"], Cell[CellGroupData[{ Cell[247093, 5717, 195, 4, 30, "Input",ExpressionUUID->"1f74bb24-0cd1-4743-9b6f-a1efa37d242d"], Cell[247291, 5723, 170, 5, 35, "Output",ExpressionUUID->"f4d8770a-6324-4016-b68e-77f8b1cc1c28"] }, Open ]], Cell[CellGroupData[{ Cell[247498, 5733, 213, 6, 30, "Input",ExpressionUUID->"68ed03df-6799-4d00-a335-a09b329d9fbb"], Cell[247714, 5741, 229, 7, 38, "Output",ExpressionUUID->"a98afb4b-b8d9-49f2-843e-def6c836340e"] }, Open ]], Cell[CellGroupData[{ Cell[247980, 5753, 327, 9, 30, "Input",ExpressionUUID->"285972fd-cd01-4255-8323-3f28e92bcda3"], Cell[248310, 5764, 230, 7, 38, "Output",ExpressionUUID->"ba56bece-f9a5-4eb8-980f-614e6958d901"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[248589, 5777, 94, 0, 38, "Subsection",ExpressionUUID->"71e95632-71fc-4b5f-af70-e71baacb6d48"], Cell[CellGroupData[{ Cell[248708, 5781, 201, 4, 30, "Input",ExpressionUUID->"a49fda24-632c-47e2-acd3-b91ba48cd0eb"], Cell[248912, 5787, 2081, 48, 182, "Output",ExpressionUUID->"9fa1cdd5-f06e-4688-bbf0-e957ea7a8f5b"] }, Open ]], Cell[CellGroupData[{ Cell[251030, 5840, 88, 0, 45, "Subsubsection",ExpressionUUID->"a38e6152-5dc2-4148-b5bf-bdee38909557"], Cell[CellGroupData[{ Cell[251143, 5844, 349, 9, 30, "Input",ExpressionUUID->"7e60831c-1ad1-4ecf-b14a-5dd92f135e76"], Cell[CellGroupData[{ Cell[251517, 5857, 172, 3, 24, "Print",ExpressionUUID->"0f05d90e-18d4-42c9-895e-b8da8614ba47"], Cell[251692, 5862, 200, 4, 24, "Print",ExpressionUUID->"d391dfc1-2513-4ad5-9cb7-fac8a5e47af6"], Cell[251895, 5868, 189, 4, 24, "Print",ExpressionUUID->"3ac27770-858a-41f7-9a3e-54a1051ccb14"], Cell[252087, 5874, 172, 3, 24, "Print",ExpressionUUID->"2b8b4ecd-0785-469d-8ff7-b256821684ac"], Cell[252262, 5879, 174, 3, 24, "Print",ExpressionUUID->"6ae3255c-037b-4021-942f-83177704fbf5"], Cell[252439, 5884, 204, 4, 24, "Print",ExpressionUUID->"a0525fd7-cafb-404f-a2d2-358d1f376b21"], Cell[252646, 5890, 177, 3, 24, "Print",ExpressionUUID->"ab252536-24d4-4f82-9078-e081ce9fa195"], Cell[252826, 5895, 205, 4, 24, "Print",ExpressionUUID->"8b6c35a8-b461-4588-9ea4-558c129858c3"] }, Open ]], Cell[253046, 5902, 183, 5, 34, "Output",ExpressionUUID->"af7a0518-79d8-4053-bc8e-1767f9414eda"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[253290, 5914, 83, 0, 38, "Subsection",ExpressionUUID->"d15e4e80-8ba5-46ff-8cef-b8293bbdf677"], Cell[CellGroupData[{ Cell[253398, 5918, 190, 4, 30, "Input",ExpressionUUID->"1ac987c3-1dad-4ce6-9683-ea0acae938c6"], Cell[253591, 5924, 1475, 37, 41, "Output",ExpressionUUID->"6d824cd1-de83-4c55-a763-743af1d65ca7"] }, Open ]], Cell[CellGroupData[{ Cell[255103, 5966, 177, 4, 30, "Input",ExpressionUUID->"a142dd49-5646-4783-ba54-60254d03125b"], Cell[255283, 5972, 1475, 37, 41, "Output",ExpressionUUID->"dad10d8c-d4d8-4743-a0a9-4eb375035e28"] }, Open ]], Cell[CellGroupData[{ Cell[256795, 6014, 265, 7, 30, "Input",ExpressionUUID->"108519e2-21e6-4fea-b60d-e46084dea4f7"], Cell[257063, 6023, 1475, 37, 41, "Output",ExpressionUUID->"c67ed878-8fde-489e-b001-7d81d23ef49d"] }, Open ]], Cell[CellGroupData[{ Cell[258575, 6065, 146, 3, 30, "Input",ExpressionUUID->"c0c6a145-cc78-4032-9d8a-d4cc13def35d"], Cell[258724, 6070, 1475, 37, 41, "Output",ExpressionUUID->"7782eaf7-2d7a-446a-8e70-2dab85fac3c1"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[260260, 6114, 97, 0, 67, "Section",ExpressionUUID->"fe49d574-16bb-4638-bbcd-a69874c61c8b"], Cell[260360, 6116, 680, 19, 52, "Input",ExpressionUUID->"42848649-95f7-4bac-831b-6d45d5e0c0e1"], Cell[CellGroupData[{ Cell[261065, 6139, 80, 0, 54, "Subsection",ExpressionUUID->"ea65f44f-5f7e-41d0-aa20-768cd3d0c930"], Cell[261148, 6141, 256, 5, 30, "Input",ExpressionUUID->"fb176fb3-1c77-47a5-a612-85ac11687604"] }, Open ]] }, Closed]] }, Open ]] } ] *)