å æ¥ãå士ï¼æ å ±å¦ï¼ã«ãªãã¾ãããå¦é¨ã¨å¤§å¦é¢ããããã 9 å¹´éã§èªãã æ å ±ç§å¦é¢é£ã®æç§æ¸ã»å°éæ¸ãæãåºãæ¯ãè¿ãã¤ã¤ããã«ã¾ã¨ãã¾ããç§ã¯ææ¥ã¯ãã¾ãèããã«ç¬å¦ããã¿ã¤ãã ã£ãã®ã§ãããã«æããæ¸ç±ãéèªããã°ã大å¦ã«éããªãã¦ãããããæ å ±å¦å士ã»ã©ã®ç¥èã¯èº«ã«ã¤ããã®ã¨æããã¾ãããã ããç¹ã«å¤§å¦é¢ã§éè¦ã¨ãªãè«æãèªã¿æ¸ããããã¨ã«ã¤ãã¦ã¯æ¬ç¨¿ã«ã¯å«ãã¦ããã¾ããããããã«ã¤ãã¦ã¯è«æèªã¿ã®æ¥èª²ã«ã¤ãã¦ãè«æã®æ¸ãæ¹ãªã©ãåèã«ãã¦ãã ããã
å¡ä¾ï¼ï¼å端ï¼ã¨ã¯ãæ°ç« ã ãèªãã å ´åããæå¾ã¾ã§èªãã ãã®ã®ç解ãæµ ããä»ã¨ãªã£ã¦ã¯èã¼ãããã¨ããè¦ãã¦ããªããã¨ãæãã¾ããâã¯ç¹ã«ãããããªãã¨ã表ãã¾ãã
- å¦é¨ä¸å¹´
- å¯ºç° æè¡ãç·å½¢ä»£æ° å¢è¨çã
- é»ç° æä¿ãå¾®åç©åã
- æ²³é æ¬éã確çæ¦è«ã
- æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æ室ãçµ±è¨å¦å ¥éã
- äºååµ æ·³ãããã°ã©ãã³ã°è¨èªã®åºç¤æ¦å¿µã
- 横å å¯æãããã°ã©ã æå³è«ãï¼å端ï¼
- åå æäº ãè¨å·è«çå ¥éã
- åå æäº ãæ°çè«çå¦åºèª¬ã
- 岡谷 è²´ä¹ã深層å¦ç¿ã
- ç¦å³¶ é 夫ãæ°çè¨ç»å ¥éã
- ãã«ã³ãã«ãã»ã³ã«ãããçµåãæé©åãï¼å端ï¼
- å¹³äº æä¸ãã¯ããã¦ã®ãã¿ã¼ã³èªèã
- å¦é¨äºå¹´
- ã¯ãªã¹ããã¡ã¼ã»ãã·ã§ããããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ãï¼å端ï¼
- æµ·é è£ä¹ãããªã³ã©ã¤ã³æ©æ¢°å¦ç¿ã
- ä¹ ä¿ æå¼¥ããã¼ã¿è§£æã®ããã®çµ±è¨ã¢ããªã³ã°å ¥éã
- ãªãã£ã¼ãã»Sã»ãµããã³ãå¼·åå¦ç¿ãï¼å端ï¼
- é«æ¨ ç´å²ãè«çåè·¯ã
- 渡波 éãCPUã®åµããããâ
- ãã¤ãããã»ãã¿ã¼ã½ã³ããã³ã³ãã¥ã¼ã¿ã®æ§æã¨è¨è¨ãâ
- å°é å¯æ°ãæ å ±ç§å¦ã«ãããè«çã
- ã¬ã¬ã¹ã»Aã»ã¸ã§ã¼ã³ãºããæ å ±çè«ã¨ç¬¦å·çè«ã
- ä»äº ç§æ¨¹ãæ å ±çè«ã
- ãã¤ã±ã«ã»ã·ããµãè¨ç®çè«ã®åºç¤ãâ
- ã©ã¤ã³ãã«ãã»ãã£ã¼ã¹ãã£ã«ãã°ã©ãçè«ãï¼å端ï¼
- 岡éå å¤§è¼ ãé«éæåå解æã®ä¸çã
- Raghu Ramakrishnan et al. "Database Management Systems"ï¼å端ï¼
- æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æ室ãèªç¶ç§å¦ã®çµ±è¨å¦ã
- æè¤ æ¯ ãç·å½¢ä»£æ°ã®ä¸çãï¼å端ï¼
- é«æ© 大è¼ãæ°å¤è¨ç®ã
- å±±æ¬ å²æãæ°å¤è§£æå ¥éãï¼å端ï¼
- å°é寺 ååããªã£ã¨ãããè¤ç´ é¢æ°ã
- ç¥ä¿ é夫ãè¤ç´ é¢æ°å ¥éã
- ç¢ã¶å´ ä¸å¹¸ãå¾®åæ¹ç¨å¼ã®åºç¤ã¨è§£æ³ã
- æ³ç° è±äºãã常微åæ¹ç¨å¼è«ã
- æ¦è¤ 義夫ããã¯ãã«è§£æã
- ç½é³¥ åéããæ å ±ãããã¯ã¼ã¯ã
- Piroãã¾ããã§ãããLinux ã·ã¹ç®¡ç³»å¥³åã
- å¦é¨ä¸å¹´
- ã¸ã§ã³ã»Lã»ããã·ã¼ããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ãï¼å端ï¼
- Hisa Andoãã³ã³ãã¥ã¼ã¿è¨è¨ã®åºç¤ããé«æ§è½ã³ã³ãã¥ã¼ã¿æè¡ã®åºç¤ã
- ãã¤ãããã»Mã»ããªã¹ãããã£ã¸ã¿ã«åè·¯è¨è¨ã¨ã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£[ARMç]ã
- 湯淺 太ä¸ãã³ã³ãã¤ã©ã
- å¤§ä¹ ä¿ è±å£ããªãã¬ã¼ãã£ã³ã°ã·ã¹ãã ã®åºç¤ã
- è¤é æãã°ã©ãã»ãããã¯ã¼ã¯ã»çµåãè«ã
- å¦é¨åå¹´
- 修士課ç¨
- éè°· å¥ä¸ããããªãåããå¿ç¨æ°å¦æ室ãâ
- æ²³å å伸ããå£ã¢ã¸ã¥ã©æé©åã¨æ©æ¢°å¦ç¿ã
- å¢ç° ç´ç´ããè¤éãããã¯ã¼ã¯ã
- Mark Newman "Networks"ï¼å端ï¼
- Deepayan Chakrabarti et al. "Graph Mining: Laws, Tools, and Case Studies"
- Stephen Boyd et al. "Convex Optimization" â
- Roman Vershynin "High-Dimensional Probability" â
- Vijay V. Vazirani "Approximation Algorithms"
- Krishna B. Athreya "Measure Theory and Probability Theory"ï¼å端ï¼
- Sheldon Axler "Linear Algebra Done Right"ï¼å端ï¼
- ããã«ãã»ã°ã©ãã ããã³ã³ãã¥ã¼ã¿ã®æ°å¦ãï¼å端ï¼
- å士課ç¨
- é森 æ¬æããæ©æ¢°å¦ç¿ã®ããã®é£ç¶æé©åã
- æ¢ è°· ä¿æ²»ããã£ããå¦ã¶æ°çæé©åã
- çµå 浩ãæå·æè¡å ¥éãâ
- ææ© å¤§å°ããã¬ã¦ã¹éç¨ã¨æ©æ¢°å¦ç¿ã
- ç¬æ¸ éçããæ©æ¢°å¦ç¿ã®ããã®é¢æ°è§£æå ¥éã
- ç¸é¦¬ è¼ããçµåãæé©åããæ©æ¢°å¦ç¿ã¸ã
- ä»æ³ å è¡ã深層å¦ç¿ã®åçã«è¿«ãã
- 鹿島 ä¹ å£ãããã¥ã¼ãã³ã³ã³ãã¥ãã¼ã·ã§ã³ã¨ã¯ã©ã¦ãã½ã¼ã·ã³ã°ã
- ä½ä¹ é æ·³ãããã¼ã¿è§£æã«ããããã©ã¤ãã·ã¼ä¿è·ã
- ããã¼ãï¼ã¢ã³ãã¼ï¼ã¢ãã¼ã¯ãHuman-in-the-Loop æ©æ¢°å¦ç¿ã
- Hisa AndoãGPUãæ¯ããæè¡ã
- æ¸æ ¹ å¤ããããã¯ã¼ã¯ã¯ãªãã¤ãªããã®ããâ
- Jorge Nocedal et al. "Numerical Optimization"
- Guido W. Imbens et al. "Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction"
- Thomas M. Cover et al. "Elements of Information Theory" â
- ã岩波 æ°å¦å ¥éè¾å ¸ããæåæ°å¦è¾å ¸ã
- ä½è¤ ç«é¦¬ãæé©è¼¸éã®çè«ã¨ã¢ã«ã´ãªãºã ãâ
- ä½è¤ ç«é¦¬ãã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãâ
- çµããã«
å¦é¨ä¸å¹´
2015 å¹´æ¥ã京é½å¤§å¦å·¥å¦é¨æ å ±å¦ç§ã«å ¥å¦ãã¾ãããåé¨æã¯æ å ±ç§å¦ã®åå¼·ãæãã¦ããã®ã§ãå ¥å¦å¾ã¯ãã£ã¨å°éã®åå¼·ãã§ããã¨åãã§ããã®ã§ãããæã£ãããæé¤ç§ç®ãå¤ãã¦ãã£ããããã®ãè¦ãã¦ãã¾ããå¦é¨ä¸å¹´çã®éã¯ãé©åº¦ã«èªç¿ããªããã空ããæéã¯ãã¹ã¦ç«¶æããã°ã©ãã³ã°ã«ã¤ãè¾¼ãã¨ããçæ´»ã§ãããå½æã¯ã¢ã«ã´ãªãºã ç³»ã®ç 究ã«é²ãããã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ã«ãªãã¨ããã¤ã¡ã¼ã¸ã§ããããIndeed ã®ãµãã¼ã¤ã³ã¿ã¼ã³ã«å¿åãã¦è½ã¡ããããã¦ããã«ã¤ãã¼ã¨æããªããã¾ãã¾ã競æããã°ã©ãã³ã°ã«ã®ããè¾¼ãã§ããã¾ããã
å¯ºç° æè¡ãç·å½¢ä»£æ° å¢è¨çã
ç·å½¢ä»£æ°ã®è¬ç¾©ã§æå®ãããæç§æ¸ã§ãã189 ãã¼ã¸ã§ããªãã³ã³ãã¯ãã«ã¾ã¨ã¾ã£ã¦ãã¾ããç§ã¯å¤§å¦åé¨ã®ã¨ãã«ããä¸åãå®ç§ã«ä»ä¸ããã®ã好ããªäººéã ã£ãã®ã§ãã³ã³ãã¯ãã«ã¾ã¨ã¾ã£ããã®æ¬ã¯ããªãæ°ã«å ¥ã£ã¦ä½åº¦ãèªã¿è¿ãã¾ãããæ¬æã¯ããªããã£ãããã¦ãã¾ãããæ¼ç¿åé¡ãããªãæ¿å¯ã§ããæ¬æã«ç»å ´ããªãã¨ã«ãã¼ãè¡åãæ¼ç¿åé¡ã§çªç¶ç»å ´ãã¦æ§è³ªãèªåã§è¨¼æãããã¨ã«ãªã£ãããçªç¶å¾®åæ¹ç¨å¼ã®è§£ãç·å½¢ç©ºéããªããã¨ã証æãããã¨ã«ãªã£ãããã¾ããè¡éãèªåã§åãã¦ç¬å¦ããã®ã¯ããªãåã«ãªã£ãã¨æãã¾ããæä½éã ãå¦ç¿ããã人ã¯æ¬æã ãèªã¿ããã£ããå¦ç¿ããã人ã¯æ¼ç¿åé¡ã¬ãããªããã¨ãã棲ã¿åããã§ããç¹ã§ãè¬ç¾©ã®æç§æ¸ã¨ãã¦ã¨ã¦ãè¯ãã¨æãã¾ãã
é»ç° æä¿ãå¾®åç©åã
å¾®åç©åã®è¬ç¾©ã®ä¸ã§ãããã¤ãåèæ¸ãæå®ããã®ã§èªç¿ãããæ¹ã¯ã©ããã¨ãããªãã®ä¸ã¤ã ã£ãã¨æãã¾ããå¾®åç©åã®è¬ç¾©ã¯ä¸éãæ¨æºçãªãã¨ã¯è§£èª¬ãããã®ã®ãä½ç¸ç©ºéè«ã測度è«ãªã©ã念é ã«ç½®ããç¬èªè·¯ç·ã§ãããå çã1ã®åå²ã«ã¤ãã¦å¬ãããã«è©±ãã¦ãããããã大å¦ã«å ¥å¦ãããã ãªã¨å®æãã¾ãããããããè¬ç¾©ã¯æ¥½ããã£ããã®ã®ããã¯ãæ¨æºçãªå¾®åç©åã身ã«ã¤ããããã«ã¯åèæ¸ã§ã®èªç¿ã¯å¿ è¦ã§ããããã®ç¹ããã®æ¬ã¯è¡éãçã説æãä¸å¯§ã§ç¬å¦ã«ã¯ã´ã£ããã ã£ãã¨æãã¾ãã
æ²³é æ¬éã確çæ¦è«ã
確çè«ã®è¬ç¾©ã®åèæ¸ã ã£ãã¨æãã¾ããè¬ç¾©ã¯ãããªãÏ-å æ³æã®è©±ããã¯ãã¾ããªã©ããªããªããã¼ãã ã£ãã¨è¨æ¶ãã¦ãã¾ãããã®æ¬ã¯ç¢ºçã®å ¬çãããªãä¸å¯§ã«å°å ¥ãã¦ããåãããããã§ããä»ã§ãæ¦åæã¨ç¢ºçåæã¨æ³ååæã£ã¦ã©ããä½ã ã£ãããªã©ç¢ºçè«ã®åºç¤çãªè©±ãåãããªããªãã¨ãã®æ¬ãåç §ãããã¨ãããã¾ãã
æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æ室ãçµ±è¨å¦å ¥éã
è¨ããã¨ç¥ããçµ±è¨å¦ã®æç§æ¸ã§ãã夫婦ã®ã¸ãããã®éé¡ã®åå¸ããä½éã®éã人ãé£è¡æ©ã«ä¹ã£ã¦å¤§ä¸å¤«ãªã®ããªã©ãç»å ´ããä¾ãã³ã©ã ãé¢ç½ããç´°ããã¨ãããä»ã§ãå°è±¡ã«æ®ã£ã¦ãã¾ããæ¨æ¬åæ£ã®é ãèªãã å½æãèªç±åº¦ã®æ¦å¿µãã©ããã¦ãããåããããããã¶ãå¾ã«ãªã£ã¦ãèªç¶ç§å¦ã®çµ±è¨å¦ãã®ç¬¬äºç« ã§ç·å½¢ä»£æ°ã使ã£ã証æãèªãã§ããããè ã«è½ã¡ã¾ããããã¯ãç´è¦³çãªèª¬æã ãã§ã¯è ã«è½ã¡åããªãå ´åãããã®ã§ã証æãä»ãã¦ããã®ãçæ³ã§ããã
äºååµ æ·³ãããã°ã©ãã³ã°è¨èªã®åºç¤æ¦å¿µã
ãã®æ¬ã¯ããã°ã©ãã³ã°è¨èªã®è§£æã念é ã«ãããå½¢å¼ç証æã®æç§æ¸ã§ããæ å ±ãªãªã³ããã¯ã®å¤å£ã»ããã¼ã§ãã®æ¬ãæ å½ãããã¥ã¼ã¿ã¼ã«ãªãã¾ããããã¨ãã¨è¨¼æè«ãå½¢å¼ç証æã«èå³ããããCoqæ¼ç¿ã«åå ããããã¦ãã¾ãããå¤å£ã»ããã¼ã§ä½¿ãæç§æ¸ã @qnighy ããã«ç¸è«ãã¦ãã®æ¬ã«æ±ºããã¨è¨æ¶ãã¦ãã¾ããèè ã®äºååµå çã¯äº¬å¤§ã®å çã§ãå¦é¨ä¸å¹´ã®è¬ç¾©ãæ å½ããã¦ããã®ã§ãè¬ç¾©å¾ã«ãµã¤ã³ãè²°ãã«è¡ãã¾ããã
ã¾ãã¯ãã¢ãã®å ¬çãªã©ããã¯ãã¾ãã¾ããæ¬ãèªã¿é²ãããã¡ãååæ¼ç®ãå¤æ°ãé¢æ°ãªã©ã®è¦ç´ ãå ãã£ã¦ããããã®å¼ãè©ä¾¡ããããããªããã¨ãããã¨ãå½¢å¼çã«è¨¼æãã¦ããã¾ããæçµçã«ã¯ MLï¼ããã°ã©ãã³ã°ï¼é¢¨ã®ããã°ã©ãã³ã°è¨èªãã§ãããããåä»ããªã©ã®éç解æããããã¨ã«ãªãã¾ãããããã¯æã§å°åºæ¨ãæ¸ãã¦è¨¼æãã¦ãè¯ãã§ãããèªå証æããããã°ã©ã ãæ¸ãã¦ãè¯ãã§ããç§ã¯å®å ¨ãªèªå証æã¾ã§ã¯ãããã証æãè£å©ããããã°ã©ã ãæ¸ããè¨æ¶ãããã¾ããæ¬æ¸ã«ã¯ãªã³ã©ã¤ã³æ¼ç¿ã·ã¹ãã ãä»å±ãã¦ãããæ¸ãã証æãèªåã§æ¡ç¹ãã¦ããã¾ãã競æããã°ã©ãã³ã°ã®ããã«ã²ã¼ã æè¦ã§é²ããããã®ãã¨ã¦ãè¯ãç¹ã ã¨æãã¾ãã
横å å¯æãããã°ã©ã æå³è«ãï¼å端ï¼
ããã°ã©ãã³ã°è¨èªã®åºç¤æ¦å¿µã®ãã¥ã¼ã¿ã¼ãããã«ããããæ·±ãã¨ããã¾ã§ç¥ã£ã¦ãããã°ã¨ããæ°æã¡ã§è²·ã£ã¦èªã¿ã¾ããããå¦é¨ä¸å¹´å½æã§ã¯é£ãããã¾ãç解ã§ãã¾ããã§ãããä¸åç¹å®çã®è©±ãªã©ã¯åº¦ã èªã¿è¿ããä¸å¹´çã®è¨èªå¦çç³»ã®è¬ç¾©ã®ã¨ãã«ããããè ã«è½ã¡ãããã«æãã¾ããクリーネの不動点定理(とベルマンフォード法) - ジョイジョイジョイ ã¯ãã®ã¨ãã«æ¸ãã¾ããã
åå æäº ãè¨å·è«çå ¥éã
å»å¦é¨ã®å人ã¨äºäººã®èªä¸»ã¼ããéå¬ãã¦èªã¿ã¾ãããåè¿°ã®ããã«è¨¼æè«ãå½¢å¼ç証æã«èå³ããã£ã¦é¸ãã è¨æ¶ãããã¾ããåå æäºå çã®æ¸ãæç§æ¸ï¼ãããã¯ãã®åéããã®æ代ãéãã¦ã®é°å²æ°ã®ããã«ãæãã¾ããï¼ã¯çè´ã軽快ã§èªãã§ãã¦æ¥½ããã£ãã§ããç¬å¦ã§ãååèªããè¡éã§ããã¤ç¡çç¾æ§ããå¤å ¸è«çã¨ç´è¦³è«çãç°ãªããã¨ã®è¨¼æãªã©å¥¥æ·±ããã¨ãæ¸ããã¦ãã¦ããããããã¾ã両ç«ãã¦ããç¨æãªæ¬ã ã¨æãã¾ããå½æãè¤éãªå½é¡ã®å°åºæ¨ãæã§æ©è§£ãããã®ã好ãã§ããã
åå æäº ãæ°çè«çå¦åºèª¬ã
ãã¡ãããè¨å·è«çå ¥éãã¨åãååå çã®ãã®ã§ãããè¨å·è«çå ¥éãã®å·»æ«ã§ãããããããã¦ãã¦ã次ã®æ¬ã¨ãã¦é¸ã³ã¾ããããã¡ãã¯ããå°ãã«ãããªã¨å ¬çããå°åºãã¦ããæãã ã£ãã¨æãã¾ãã
岡谷 è²´ä¹ã深層å¦ç¿ã
è¨ããã¨ç¥ããæ¥æ¬èªã®æ·±å±¤å¦ç¿ã®ä»£è¡¨çãªæç§æ¸ã§ããç¾å¨ç¬¬äºçãåºã¦ãã¾ãããå½æã¯ç¬¬ä¸çãåºãã¦ã§ãããæ å ±ãªãªã³ããã¯ã®å¤å£ã»ããã¼ã§ãç§ã¯ãã®æ¬ã®æ å½ã§ã¯ãªãã£ãã®ã¯ããªã®ã§ãããæ å½è ãã³ãã±ã«è¡ãããæ©éããã®ã§ãã®æ¬ãéå ¬å¼ã«åãæã¤ãã¨ã«ãªãã¾ãããå¤å£ã»ããã¼ã§ã¯ã@potetisensei ã¨ä¸ç·ã«æ·±å±¤å¦ç¿ã®ãã¬ã¼ã ã¯ã¼ã¯ã C++ ã§ã¹ã¯ã©ããããå®è£ ãã¾ãããChainer ã®ãªãªã¼ã¹ã2015å¹´6æ9æ¥ãªã®ã§é ããã㨠2 ã¶æã»ã©ã¨ããææã§ããChainer ã¨ã¯æ¯ã¹ç©ã«ãªããªãããããç²æ«ãªããããç·å½¢å±¤ãç³ã¿è¾¼ã¿å±¤ãããããã¢ã¦ããªã©ãå®è£ ããç¬ç«ã®ç»ååé¡ã§ç²¾åº¦ 80 ãã¼ã»ã³ãããªãã¨ãéæããã®ãè¦ãã¦ãã¾ãããã®å¾ããã®èªä½ãã¬ã¼ã ã¯ã¼ã¯ã使ã£ã¦ãªã¼ãã¨ã³ã³ã¼ãã¼ãå®è£ ãã¦ãæ«äºå¯ã¡ããã®ç»åãç¡éã«çæããããã¦éã³ã¾ããã
çµæçã«ããã®æ¬ãåãæã£ããã¨ãèªåã®é²è·¯ã大ããå¤ãããã¨ã«ãªã£ãã¨å¾ã§æãã¾ãããã¨ãã¨æ©æ¢°å¦ç¿ã深層å¦ç¿ã«èå³ã¯æã£ã¦ãããã®ã®ãããã¾ã§è¶£å³ç¨åº¦ã§ãèªåã«ã¨ã£ã¦ã®æ¬æ¥ã¯ã¢ã«ã´ãªãºã ã ã¨æã£ã¦ãã¾ãããããããå¢ã«å¾ã ã«æ©æ¢°å¦ç¿ã®ã¦ã§ã¤ãã大ãããªã£ã¦ããã¾ãããå¾ã«è¿°ã¹ãããã«ãå¦é¨ååçã®ã¨ãã«ã¯ã¡ããã©åã ãããã«ãªã£ã¦ãããçµæã¨ãã¦æ©æ¢°å¦ç¿ã®é²è·¯ã«æ±ºãã¾ããããã®ã¨ãåãæã£ã¦ããªããã°ãååçã®ã¨ãã«åã ã¨ã¯ãªãããã¢ã«ã´ãªãºã ã®éã«é²ãã§ããããã«æãã¾ãã
ç¦å³¶ é 夫ãæ°çè¨ç»å ¥éã
ç·å½¢è¨ç»ã®è¬ç¾©ã®æç§æ¸ã§ããã200 ãã¼ã¸ã»ã©ã§ã³ã³ãã¯ãã§ãããç·å½¢è¨ç»ã®é ã«ã¯å ç¹æ³ã¨ãã®æ°å¤ä¾ã¾ã§è¼ã£ã¦ãã¾ããã·ã³ãã¬ãã¯ã¹æ³ã¯ç«¯ç¹ã辿ãã®ã§æéåã§åæ¢ããã®ã¯åããããå ç¹æ³ã¯ããããåæ¢ããªããããªãå¤é å¼æéã主張ãã¦ããã®ããåããããææã«ç´è¨´ãã«è¡ã£ãã®ãè¦ãã¦ãã¾ããææã¯åªãããåèæç®ã渡ãã¦ããã¾ãããå®å ¨ã«ã¯è ã«è½ã¡ããç解ã§ããã®ã¯éåå¾ã« Boyd ã® Convex Optimization ãèªãã§ããã ã£ãã¨æãã¾ããã¾ããææ¥ã§ã¯ç·å½¢è¨ç»ã®ç« ã¾ã§ã§ãããããããã¯ã¼ã¯è¨ç»ã®ç« ã§ã¯ããªããã¼ããã·ã¥æ³ãªã©ã解説ããã¦ããã競æããã°ã©ãã³ã°è³ã ã£ãç§ã¯ãã¡ãã®æ¹ãèå³ãæã£ã¦èªãã§ãã¾ããã
ãã«ã³ãã«ãã»ã³ã«ãããçµåãæé©åãï¼å端ï¼
çµåãæé©åã«ã¤ãã¦ã®ä¸ççã«æåãªæç§æ¸ã§ãããµã¼ã¯ã«ã§ãã®æ¬ã®è¼ªè¬ã主å¬ãã¾ããã700 ãã¼ã¸è¶ ãå ¨é¨ã§ 22 ç« ãããã®ã§ãããçµå±è¼ªè¬ã¯ 4 ç« ãããã®ç·å½¢è¨ç»ã§çµãã£ã¦ãã¾ãã¾ããããªããªãè¡éãåºããå¼å¤å½¢ã追ãã®ã大å¤ã§ããããã®å¾ããã³ãã³è¼ªè¬ããã£ããèªã¿è¿ããããã¦ãã¾ãããçµå±æå¾ã¾ã§ã¯èªãã§ãã¾ãããå²ã¨èªåã®å°éã«ãè¿ãã®ã§ãèªãã æ¹ãããã¨æãã¤ã¤ã9 å¹´ãçµã£ã¦ãã¾ãã¾ããããã£ããèªãã¨ã¨ã¦ãåãä»ãã¯ãã§ããå¦é¨ä¸å¹´ã®ã¨ãã« @DEGwer ããã®æ¬ã常ã«æã¡æ©ãã¦ãã¦ãæã«ããããã¤ã¤ãæå¾ã¾ã§èªã¿åã£ã¦ããè¨æ¶ãããã¾ãããã¯ãããã人ã¯ãããã
å¹³äº æä¸ãã¯ããã¦ã®ãã¿ã¼ã³èªèã
ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ã®æåãªæç§æ¸ã§ããããããã¯ããã¿ã主æååæãã¯ã©ã¹ã¿ãªã³ã°ãã¢ã³ãµã³ãã«ãªã©ãç¾å ´ã§ã使ããããªãã¼ã¿åæã®åºæ¬äºé ãä¸å¯§ã«ã¾ã¨ã¾ã£ã¦ãã¾ããç§ã¯æ·±å±¤å¦ç¿ãã¤ãã£ããªã®ã§ãããæ©æ¢°å¦ç¿ã®åºæ¬äºé ãå¦ãã§ãããæ¹ãè¯ãã¨æãè³¼å ¥ãã¾ãããPRML ãªã©ã¨æ¯ã¹ã¦ãè¨è¿°ãåããããããç¬å¦ãããããã§ããä»ã§ãæ©æ¢°å¦ç¿ã®å ¥éã«ããããã®ä¸åã§ãã
å¦é¨äºå¹´
äºå¹´çã«ãªãã¨è¨ç®æ©ç§å¦ã³ã¼ã¹ã¨æ°çç§å¦ã³ã¼ã¹ã«æ¯ãåãããã¾ããç§ã¯è¨ç®æ©ç§å¦ã³ã¼ã¹ã§ãããå¦é¨ä¸å¹´ã®éã«ããªãåä½ãåã£ã¦ããã®ã§ãå¦é¨äºå¹´ã®ã¨ãã«ã¯ã¹ã±ã¸ã¥ã¼ã«ã«ä½è£ãã§ãããã¯ã空ããæéã¯ãã¹ã¦ç«¶æããã°ã©ãã³ã°ã«ã¤ãè¾¼ãã¨ããçæ´»ã§ããã
ã¯ãªã¹ããã¡ã¼ã»ãã·ã§ããããã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ãï¼å端ï¼
æ©æ¢°å¦ç¿ã®ä¸ççãªåèã§ãããããã PRMLããã£ããæ©æ¢°å¦ç¿ãå¦ã¶ããã«ãèªã¾ãã°ã¨ããæ°æã¡ã§è²·ãã¾ããããªããªãé£ããã£ãã§ããä¸å·»ã¯ä¸éãèªã¿ã¾ããããå½æã¯ä¸å·»ã®å 容ããæªããã£ãã§ããæ£ç´ã«åç½ããã¨ãä¸å·»ã¯ãã©ãã©åç §ãããããã§ãä»ã§ãæå¾ã¾ã§èªãã§ãã¾ãããä¸å¿æ©æ¢°å¦ç¿ã®ç 究ããã¦ããã¯ããªãã§ããã©ãããã®æ¬ã¯æ©æ¢°å¦ç¿ã®ç»ç«éçãªé¡ããã¦ãã¾ãããæ£ç´ããªãé£ããï¼ããã¤ãºå¯ã£ã¦ãã¦ã¯ã»ãããï¼ã®ã§ãé£ããã¨æã£ãæ¹ã¯æ½ã諦ãã¦ãã¯ããã¦ã®ãã¿ã¼ã³èªèããã深層å¦ç¿ï¼æ©æ¢°å¦ç¿ãããã§ãã·ã§ãã«ã·ãªã¼ãºï¼ããªã©ããå§ããã®ãè¯ãã¨æãã¾ãã
æµ·é è£ä¹ãããªã³ã©ã¤ã³æ©æ¢°å¦ç¿ã
2016 å¹´ã®æ å ±ãªãªã³ããã¯ã®å¤å£ã»ããã¼ã¯ãã¡ããæ å½ãã¾ãããã深層å¦ç¿ãã¯æ¢ã«èªãã§ããããå®ç¨ã«å¯ã£ãæ¬ãè¯ããã¨æã£ã¦ãã¡ããé¸ã³ã¾ãããæ¬ã®ã¿ã¤ãã«ããããã¨ãªã°ã¬ãã解æãªã©ãã´ãªã´ãªåºã¦ããããªæãã§ããããããã訳ã§ã¯ãªãï¼ä¸é¨åºã¦ãã¾ããï¼ãã©ã¡ããã¨ããã¨ã¹ããªã¼ãã³ã°ã§ãã¼ã¿ãå¦çããç¾å®çãªã¢ããã¼ãã®ç´¹ä»ãä¸å¿ã§ãããã®å¹´ã®å¤å£ã»ããã¼ã®è¬æ¼ã¯ @iwiwi ããã§ãè¬æ¼å¾ã« PRML çæã«ãã¤é¡ãã¦ããï¼ãé ã®ä¸ã¯ãããã ããã®ï¼ç§ã«è©±ããã¦ãããã¨ã¦ãå¬ããã£ãã®ãè¦ãã¦ãã¾ãã
ä¹ ä¿ æå¼¥ããã¼ã¿è§£æã®ããã®çµ±è¨ã¢ããªã³ã°å ¥éã
ããã¾ã§ã¯æ·±å±¤å¦ç¿ããæ©æ¢°å¦ç¿ã®ä¸ã§ãçè«ããã®ãã¨ãä¸å¿ã«åå¼·ãã¦ããã®ã§ãå°ã«è¶³ã®ã¤ãããã¼ã¿è§£æãå¦ã¶ããã«èªã¿ã¾ããããããããã¨ãµã¤ãã¯å¦ã¶é ãéããããã¾ãããè©å¤ã«éãã¬è¯ãæ¬ã§ãç¾å®ã®ãã¼ã¿ãä¸å¯§ã«åæããæ¹æ³ãåãããããè¼ã£ã¦ãã¾ããæè¡æ¸ã¨å°éæ¸ã®ä¸éãããã®ç«ã¡ä½ç½®ã§ãããã
ãªãã£ã¼ãã»Sã»ãµããã³ãå¼·åå¦ç¿ãï¼å端ï¼
å¼·åå¦ç¿ã®ä¸ççãªåèã§ããAlpha Go ã§ãã¼ã ã«ãªã£ãããã¦ãã¡ããã¨å¼·åå¦ç¿å¦ã³ãããªã¨æã£ãã®ã§è³¼å ¥ãã¾ãããä¸å¿æå¾ã¾ã§ã¯èªãã ã®ã§ãããç´°ããã¨ããã¯ç解ãããã¾ãã§ãããæ£ç´ãã¾ã§ãç´°ããã¨ããã¯ãããµãã§ãå¼·åå¦ç¿ã«è¦ææèï¼ææ³ãè¦æã¨ãã§ã¯ãªããç§ã®ç解ãçãã¨ããæå³ã§ãï¼ããã£ãããã¾ããç¾å¨ã¯ç¬¬äºçãåºã¦ãããå 容ã¯éåæ¡å ãããããã§ãããã¡ããè³¼å ¥ã¯ããã®ã§ããç©ãã§ããç¶æ ã§ãâ¦â¦ã
é«æ¨ ç´å²ãè«çåè·¯ã
è«çåè·¯ã®è¬ç¾©ã®æç§æ¸ã§ãããé«æ¨å çæ¬äººãè¬ç¾©æ å½ã§ãããã«ã«ãã¼å³ãããªãããããããªã©ãè«çåè·¯ã®åºæ¬äºé ãä¸éãè©°ã¾ã£ã¦ãã¾ããå¦ãã ãã¨ã¯ãé ã§ã¯ç解ãã¤ã¤ãå®æ ã¯ããåãããªããªã¨æã£ã¦ãã¾ãããã次ã®ãCPUã®åµãããããèªãã§ä¸æã«ç解ãæ·±ã¾ãã¾ããã
渡波 éãCPUã®åµããããâ
å 容ã¯ã¿ã¤ãã«ã®éãã§ããããªãæãåºæ·±ãæ¬ã§ãããã®æ¬ãèªãã¾ã§ã¯ããã¼ãã¦ã§ã¢ãé»ååè·¯ã«ã¯ããªãã®è¦ææèãæã£ã¦ããã®ã§ããããã®æ¬ã®ãããã§å æã§ãã¾ãããè¦ææèãåãé¤ãã¨ããã®ã¯éè½ããªããã¨ã ã¨æãã¾ããæ¬ã®ä¾¡å¤ã¯æ¬ãèªãåã¨èªãã å¾ã®å·®ï¼ä»å ¥å¹æï¼ã«ããã¨èãã¦ãã¾ããããã®ç¹ã§ã¯ç§ã«ã¨ã£ã¦ç¸å½ãªä¾¡å¤ã®ããæ¬ã§ãããä»ã§ãçæ³ã®æ¸ç±ã®ä¸ã¤ã¨å¿ã®ä¸ã§å´ããªãããèªåãããã¹ããæ¸ãã¨ãã«ãã¤ã³ããã²ã£ããåèã«ãã¦ãã¾ãï¼ããä¸ã¤æãããªã Boyd ã® Convex Optimization ãå´æãã¦ãã¾ããï¼
ãã¤ãããã»ãã¿ã¼ã½ã³ããã³ã³ãã¥ã¼ã¿ã®æ§æã¨è¨è¨ãâ
ã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ã®ä¸ççåèã§ãããããããã¿ãããæ±ã£ã¦ããå 容ã¯åºç¯ãªãããè¨è¿°ãã¨ã¦ãä¸å¯§ã§ããããããã§ããåºç¤çãªäºé ã解説ããªãããIntel Core i7 ã§ã¯ãããã¿ããã«ç¾å®çã«è¦ªãã¿ã®ããããã»ããµã«ã¤ãã¦ã解説ãããã®ã§ã座å¦ã¨ç¾å®ä¸çãçµã³ã¤ããããã®ã大ããªç¹å¾´ã§ããç 究è ã§ãªãã¨ããã³ã³ãã¥ã¼ã¿ãæ±ãè·æ¥ã§ããã°ããã®æ¬ãèªãã¨ããªãè²ã ãªãã¨ã®ç解ãæ·±ã¾ãã¨æãã¾ãã
å°é å¯æ°ãæ å ±ç§å¦ã«ãããè«çã
ãã¾ãæèãã¦ã¾ããã§ãããããããã£ã¦ä¸¦ã¹ãã¨å½æçµæ§è«çå¦ã®æ¬ãèªãã§ã¾ããããã¡ãã¯æ¨æºçãªå½é¡è«çãè¿°èªè«çããã¯ãããªããããè«çã¨ããã°ã©ã ã®é¢ä¿ãè¿°ã¹ããã証æå°åºã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦è¿°ã¹ãããã¿ã¤ãã«ã«ããéãæ å ±ç§å¦ã¨ã®ç¹ããå¼·ãæèãã¦ãããã¨ãç¹è²ã§ããã¾ããæ§ç¸è«çãæ·±ãæ±ã£ã¦ãããã¨ã大ããªç¹è²ã§ããæçµçã«ã¯ã©ã ãè¨ç®ãåºã¦ãã¦ãã«ãªã¼ãã¯ã¼ãåå対å¿ã§çå°ããã¨ããæµãã§ãããè¨å·è«çå ¥éããªã©ã ã¨æ å ±ç§å¦ã¨ã®ç¹ãããè¦ãã¥ããããããã°ã©ã æå³è«ãã¯ããªãé£ããã®ã§ãæ å ±ç§å¦å¿ç¨åæã§è«çå¦ãå¦ã¶ã®ã§ããã°ãããã°ã©ãã³ã°è¨èªã®åºç¤æ¦å¿µãããã¡ããèªãã®ãè¯ãã¨æãã¾ãã
ã¬ã¬ã¹ã»Aã»ã¸ã§ã¼ã³ãºããæ å ±çè«ã¨ç¬¦å·çè«ã
ã¿ã¤ãã«ã®éãæ å ±çè«ã¨ç¬¦å·çè«ã®æç§æ¸ã§ããé«æ ¡ 3 å¹´çã®ã¨ãã®æ å ±ãªãªã³ããã¯å¤å£ã»ããã¼ã§ä½¿ã£ãæ¬ã§ããå½æã¯ãããªçºè¡¨ããã¾ãããå人ã®å¸½åã®åé¡ãä»ã§ãããªã好ãã§ãã
www.slideshare.net
ãã°ããèªãã§ãã¾ããã§ããããå¦é¨äºå¹´ã§æ å ±çè«ã®è¬ç¾©ãããã«ããã£ã¦èªã¿è¿ãã¾ããã
ä»äº ç§æ¨¹ãæ å ±çè«ã
æ å ±çè«ã®è¬ç¾©ã®æç§æ¸ã§ãããã¬ã¬ã¹ã»Aã»ã¸ã§ã¼ã³ãºããæ å ±çè«ã¨ç¬¦å·çè«ãã§ä¸éãå¦ç¿ã¯ãã¦ããã®ã§ãããè¬ç¾©ã試é¨ããã®æç§æ¸ã«æ²¿ã£ã¦å±éãã¦ããã®ã¨ãäºåç®ãèªãã§ç解ãããã¹ãã«ãã¦ãããã¨ããæ°æã¡ã§èªã¿ã¾ãããå·¡å符å·ã®ããããªã©ãå·¥å¦å¿ç¨ãå¼·ãæèããã¦ããã®ãç¹å¾´ã§ãã2019 å¹´ã«ç¬¬äºçãåºãããã§ãã
ãã¤ã±ã«ã»ã·ããµãè¨ç®çè«ã®åºç¤ãâ
çè«è¨ç®æ©ç§å¦ã«ã¤ãã¦å¹ åºãå 容ãæ±ã£ãå ¥éæ¸ã§ããæåã¯ãªã¼ãããã³ãªã©ããã¯ãã¾ããè¨ç®å¯è½æ§ãè¨ç®é層ã«ã¾ã§è©±ãåã³ã¾ããç¹ã«ç¬¬ 7 ç« ãã第 10 ç« ã®è¨ç®é層ã§ã¯ãé åè¤éæ§ï¼ãµãããã®å®çãªã©ï¼ã確ççã¢ã«ã´ãªãºã ï¼ã¯ã©ã¹ BPP ãªã©ï¼ãªã©çºå±çãªãã¨ãæ±ã£ã¦ãããä»ã§ã度ã è¦è¿ãã¦ãã¾ããçè«è¨ç®æ©ç§å¦ã®ç 究ããããªããã²ããããã§ãã
ã©ã¤ã³ãã«ãã»ãã£ã¼ã¹ãã£ã«ãã°ã©ãçè«ãï¼å端ï¼
ã°ã©ãçè«ã®ä¸ççã«æåãªæç§æ¸ã®ä¸ã¤ã§ããç§ã¯ã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ç 究ããã¦ããããã°ã©ãçè«ã¯ããªãè¿ãåéãªã®ã§ãããæ£ç´ã«åç½ããã¨ã¡ããã¨éèªãã¦ãã¾ãããå 容ã¯æ å ±ç§å¦ã¨ããããã¯ããªãæ°å¦ã«å¯ã£ã¦ããå°è±¡ã§ããæçµçã«ã¯ã°ã©ããã¤ãã¼çè«çãªè©±ã§çå°ããããã§ãããã¤ãã¯ã¡ããã¨æå¾ã¾ã§èªã¿ããã§ãã
岡éå å¤§è¼ ãé«éæåå解æã®ä¸çã
æåå解æã®ããã®é«åº¦ãªã¢ã«ã´ãªãºã ãã¾ã¨ã¾ã£ãç¨æãªæ¬ã§ããèªç¶è¨èªå¦çãããããã«ä½ã¬ã¤ã¤ã¼ãªãæååæ¤ç´¢ãªã©ã®è©±ã§ãã競æããã°ã©ãã³ã°ç¨ã«ã¦ã§ã¼ãã¬ããè¡åãå¦ã¶ããã«èªã¿ã¾ãããããã以å¤ã®ç°¡æ½ãã¼ã¿æ§é ã BW å¤æãªã©ã®è©±ãã¨ã¦ãé¢ç½ãããã«ãªãã¾ãããå½æã¯ãã® PFN ã®å²¡éåããã ã¨ã¯æèããã«èªãã§ãã¾ããã
Raghu Ramakrishnan et al. "Database Management Systems"ï¼å端ï¼
ãã¼ã¿ãã¼ã¹ã®æç§æ¸ã§ãã1000 ãã¼ã¸è¶ ãã§ã¨ã¦ãååãã§ãããã¼ã¿ãã¼ã¹ã®è¬ç¾©ã¯ç¬èªã®è¬ç¾©è³æãåºã«ãããã®ã ã£ãã®ã§ããã2ç¸ããã¯ã®ãããã¨ããã¼ã«ããã¯ã®ããããã©ããã¦ãç解ã§ããããã¡ãã®æ¬ã«ãããã¾ãããæµç³ã«è¨è¿°ãã¨ã¦ã詳ããããã¡ãã®æ¬ãèªãã§å®å ¨ã«ç解ããã®ãè¦ãã¦ãã¾ããå½æã¯ãã¾ãæ´æ¸ãèªãç¿æ £ã¯ããã¾ããã§ãããããã¾ãã«ç°¡æ½ãªäºæ¬¡ã»ä¸æ¬¡è³æãèªãã§ç解ã§ããªãå ´åã¯æµ©çãªæ´æ¸ã«ããã£ã¦ãã£ããèªãã æ¹ãæ©ãã¨ãããã¨ãå¦ã¶è¯ãæ©ä¼ã§ããã
æ±äº¬å¤§å¦æé¤å¦é¨çµ±è¨å¦æ室ãèªç¶ç§å¦ã®çµ±è¨å¦ã
åè¿°ã®ãçµ±è¨å¦å ¥éãã®ã·ãªã¼ãºã§ãããçµ±è¨å¦å ¥éããç´è¦³çãªå°å ¥ãå¤ãã£ãã®ã«å¯¾ãã¦ãæ°å¼å¤ãã§è¨¼æãã¹ã±ãããè¼ã£ã¦ãã¦ãã¡ããã¨æ°å¦ãå¦ãã å¾ã§ã¯ãã¡ãã®ã»ããç´å¾æãå¼·ãã£ãã§ãããã ããè²·ã£ãå½æã¯æ°å¦ãé£ãããã¡ããã¨è ã«è½ã¡ãã®ã¯è²·ã£ã¦ããããªãå¾ã ã£ãããã«æãã¾ãã
æè¤ æ¯ ãç·å½¢ä»£æ°ã®ä¸çãï¼å端ï¼
ç´ç²æ°å¦ã«å¯ã£ãç·å½¢ä»£æ°ã®æç§æ¸ã§ãããããªãä½ã¨ç·å½¢ç©ºéã®å®ç¾©ããã¯ãã¾ãã»ã©å®¹èµ¦ã¯ãªãã§ãããä¾ãä½è«ãè±å¯ã§èªã¿ãããã§ããä¸ã§ç´¹ä»ãããç·å½¢ä»£æ° å¢è¨çããã¯ãããç·å½¢ä»£æ°ã®å·¥å¦ããã®æç§æ¸ãæ¨æºçãªå ¥éæ¸ã¯è¡åè¨ç®ã«éããç½®ãã¦ããå ´åãå¤ãã§ããããã®æ¬ã¯æ½è±¡çãªç©ºéã®æ±ãã«å¾¹ãã¦ãããå¥ã®è§åº¦ããç´è¦³ãé¤ãã®ã«å½¹ç«ã¡ã¾ãããå対空éã®ãããã¯ä½åº¦ãèªã¿è¿ãã¾ããã
é«æ© 大è¼ãæ°å¤è¨ç®ã
äºå¹´çã®å¾æã«æ°å¤è¨ç®ã®ææ¥ããããç¬å¦ç¨ã®æåã®ä¸åã¨ãã¦èªã¿ã¾ããã200 ãã¼ã¸æªæºã¨ã³ã³ãã¯ãã§ãããæ¹ç¨å¼ã®æ±æ ¹ï¼ãã¥ã¼ãã³æ³ãªã©ï¼ãæ²ç·è£å®ãæ°å¤ç©åãå¾®åæ¹ç¨å¼ãç·å½¢æ¹ç¨å¼ãªã©ãåºæ¬çãªäºé ãä¸éãã¾ã¨ã¾ã£ã¦ãããå ¥éæ¸ã¨ãã¦ããããã§ããå½ææ¸ãããªã¤ã©ã¼æ³ã¨ã«ã³ã²ã»ã¯ãã¿æ³ã®æ¯ãåã®ã·ãã¥ã¬ã¼ã·ã§ã³ãè¦ã¤ããã®ã§è²¼ã£ã¦ããã¾ããã¨ãã«ã®ã¼ä¿ååãç¡è¦ãããªã¤ã©ã¼æ³åæ¯ãåãããããããã§ãããæ°å¤ã·ãã¥ã¬ã¼ã·ã§ã³ã®ãã³ãã¢å¤±æä¾ãè¦ãã®ã好ãã§ãã
ç§ã®ç 究åéï¼æ©æ¢°å¦ç¿ï¼ã§ã¯ç©çã·ãã¥ã¬ã¼ã·ã§ã³ããããã¨ã¯å°ãªãã§ããããªã¤ã©ã¼æ³ãã«ã³ã²ã»ã¯ãã¿æ³ã¯å¾é æµã®è¨ç®ã«ä½¿ãããããæ¡æ£ã¢ãã«ã®è¨ç®ã«ä½¿ãããããæå¤ã¨æ¥ç¹ãå¤ãã§ãã
å±±æ¬ å²æãæ°å¤è§£æå ¥éãï¼å端ï¼
æ°å¤è¨ç®ã®äºåç®ã®æç§æ¸ã¨ãã¦ä½¿ãã¾ãããé«æ© 大è¼ãæ°å¤è¨ç®ããããå¹ åºãã証æã詳ããã§ããããã£ã¨éèªãã¾ããããã¹ã¦ã¯ç¿å¾ã§ãããæ°å¤è¨ç®ãåãããªããªããã³ã«èªã¿è¿ãã¦ãã¾ãã
å°é寺 ååããªã£ã¨ãããè¤ç´ é¢æ°ã
è¤ç´ 解æã®å ¥éæ¸ã§ããè¤ç´ 解æã®ææ¥ã«ããããç¬å¦ç¨ã«èªã¿ã¾ãããç´è¦³ãå¤ãæä¾ãã¦ãããããä¸é¨ä¼è©±å½¢å¼ã ã£ãããã¨ã¦ãèªã¿ãããã§ããããã§ããªãããä¸è´ã®å®çã解ææ¥ç¶ã¾ã§ãã¡ãã¨èª¬æãã¦ãããå ¥éæ¸ã¨ãã¦ã¨ã¦ãåªãã¦ããã¨æãã¾ããè¤ç´ 解æã®æ¬ã§ã¯ä¸çªèªã¿è¿ãã¾ãããã¡ãªã¿ã«ãçæ°å®çã¯æ°å¦ã®å®çã®ä¸ã§ããããã¯ã©ã¹ã«å¥½ãã§ãã
ç¥ä¿ é夫ãè¤ç´ é¢æ°å ¥éã
è¤ç´ 解æã®ææ¥ã®åèæ¸ã ã£ãã¨æãã¾ããçéã®æç§æ¸ãªã®ã§ãä¸äººã«ããããã§ããç§ã¯ããªã£ã¨ãããè¤ç´ é¢æ°ããä½åº¦ãèªãã ãã¨ãæ¨æºçãªæµãã確èªããããã«ä½¿ãã¾ãããå¼µãåã£ã¦ã¢ã¼ã«ãã©ã«ã¹ãè¤ç´ 解æããè²·ã£ãã®ã§ããããã¡ãã¯çµå±ã»ã¨ãã©èªãã¦ãã¾ããâ¦â¦ã
ç¢ã¶å´ ä¸å¹¸ãå¾®åæ¹ç¨å¼ã®åºç¤ã¨è§£æ³ã
å¾®åæ¹ç¨å¼ã®ææ¥ã®æç§æ¸ãåèæ¸ã ã£ãã¨æãã¾ãã130 ãã¼ã¸ã§ 1300 åã¨å 容ãå¤æ®µããæé ãå¾®åæ¹ç¨å¼ãå¦ãã ãã¨ãç¡ãã£ãã®ã§ãä¸éãå 容ãç¥ãã®ã«å½¹ç«ã¡ã¾ããã
æ³ç° è±äºãã常微åæ¹ç¨å¼è«ã
ãã¡ããå¾®åæ¹ç¨å¼ã®ææ¥ã®æç§æ¸ãåèæ¸ã ã£ãã¨æãã¾ããããªã¥ã¼ã æãé£åº¦ã¨ãã«ãå¦é¨ 2~3 å¹´ã§å¾®åæ¹ç¨å¼ãå¦ã¶ã«ã¯ã¡ããã©è¯ãã¨æãã¾ããå½æã¯å²ã¨çå£ã«åå¼·ããã¯ããªã®ã§ããããã®å¾ï¼é²ãã åéçã«ï¼ä½¿ããã¨ãã»ã¨ãã©ãªãã£ãã®ã§ãä»èªã¿è¿ãã¨ç解ãæªããé¨åãå¤ãã§ããâ¦â¦ã
æ¦è¤ 義夫ããã¯ãã«è§£æã
ãã¯ãã«è§£æã®ææ¥ã®æç§æ¸ãåèæ¸ã§ããããã¡ããããªã¥ã¼ã æãé£åº¦ã¨ãã«ãå¦é¨ 2~3 å¹´ã§å¾®åæ¹ç¨å¼ãå¦ã¶ã«ã¯ã¡ããã©è¯ãã¨æãã¾ããå¾®åæ¹ç¨å¼ããã¯ãã«è§£æã¯ç§ã®å°éï¼æé©è¼¸éãæ©æ¢°å¦ç¿ï¼ã¨ãé ããããªã®ã§ãããå½æã®è¬ç¾©ãç§ã®ç解ã®ä»æ¹ãç©çã念é ã«ç½®ãããã®ã§ããã®ã¨ãã®åå¼·ãä»ã®ç 究ã®ç解ã¨ç´æ¥çµã³ã¤ãã¦ããªãæããããã®ãæ¯ãããã§ããä½è£ãã§ããããã®ãããã®è©±é¡ãããä¸åº¦åå¼·ãã¦æ©æ¸¡ããããã§ããã
ç½é³¥ åéããæ å ±ãããã¯ã¼ã¯ã
ã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯ã®è¬ç¾©ã®æç§æ¸ã§ãããå½æãä»ãããããã¯ã¼ã¯ãä¸å¾æã ã¨ããèªèªããããæè¨ã«é ¼ã£ãããã¤ã¤ãå¿ æ»ã«åå¼·ããã®ãè¦ãã¦ãã¾ããã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯å®å ¨ç解ã«ã¯ç¨é ãã§ãããç¨èªãªã©ã¯è¨æ¶ã®é ã«ãããæã«è§¦ãã¦è³å æ¤ç´¢ã«å¼ã£ããã£ã¦ã¨ã£ããããä½ããããã«ãªã£ãã®ã¯ã¨ã¦ãå½¹ç«ã£ã¦ãã¾ãã
Piroãã¾ããã§ãããLinux ã·ã¹ç®¡ç³»å¥³åã
æ å ±ãªãªã³ããã¯ã®ãµã¼ãã¼æ å½ã«ãªã£ãããã¦ãå®éã®ã³ã³ãã¥ã¼ã¿ã¼ã®ä½¿ãæ¹ãå¦ã°ãã°ãªã¨æã£ã¦æåã«æã«åã£ãæ¬ã§ããã¦ã«ãæãã§ãããã¦ã¼ã¹ã±ã¼ã¹ã«åºã¥ããªããå°ããã¤ã³ãã³ãçãè¦ãã¦ãããã®ã§ãæ¬å½ã®åå¿è ã«ã¯ããããã§ãã
å¦é¨ä¸å¹´
å¦é¨ä¸å¹´ã¯è²ã ãªã¿ã¼ãã³ã°ãã¤ã³ããããã¾ããã
ä¸çªã¯ PFN ã®ãµãã¼ã¤ã³ã¿ã¼ã³ã«æ¡ç¨ããããã¨ã§ãããããæ©æ¢°å¦ç¿åéã«é²ã決å®æã«ãªãã¾ãããã¤ã³ã¿ã¼ã³åæ㯠30 人ã»ã©ããã®ã§ãããçããã¨ã¦ãåªç§ã§ãåæå ¨å¡ã§é£äºä¼ã«è¡ã£ãããçºè¡¨ä¼ã«åå ããããã¨ã¦ãåºæ¿çãªäºã¶æéã§ãããã¤ã³ã¿ã¼ã³ã®æºåããã¦ãããããããè«æãèªãã®ã«ç®è¦ãã¦ããã®ããã¯ãã®ããã°ã«ããããè¨äºãæ¸ãã¾ãã â 2017-01-01から1年間の記事一覧 - ジョイジョイジョイãå¬ã«ã¯ Wantedly ã§ã®æ©æ¢°å¦ç¿ç³»ã®ã¤ã³ã¿ã¼ã³ã«ãåå ãã¾ãããå½ææ å½ãã¦ããã ãã @awakia ããã¨ã¯ä»ã§ã交æµãããããã¡ãã®ã¤ã³ã¿ã¼ã³ãè¯ãçµé¨ã«ãªãã¾ããã
大å¦ã§ã¯ãã¼ãã¦ã§ã¢å®é¨ãã¨ã¦ãå°è±¡ã«æ®ã£ã¦ãã¾ããä¸äººã§ãã«ãã³ã¢ CPU ãä½ã£ãããèªä½ CPU ç¨ã®ã³ã³ãã¤ã©ãä½ã£ãããã¾ããããã®æã®è¨é²ã¯ãã¡ããã覧ãã ããã
ãã®å®é¨ã¯å¤§å¦ã®ææ¥ã®ä¸ã§ã¯æããã§æãåºæ·±ãããã¤ä¸çªåå¼·ã«ãªãã¾ãããåé ã§è¿°ã¹ãããã«ãç§ã¯ææ¥ã¯ãã¾ãèããã«ç¬å¦ããã¿ã¤ãã ã£ãã®ã§ããããã®å®é¨ã®ããã ãã§ãæ å ±å¦ç§ã«å ¥ã£ã¦è¯ãã£ãã¨æãã¾ãã
å¾æã®å®é¨ 4 ã§ã¯ãã¯ããã¦è«æãæ¸ãã¦å½éä¼è°ã«æ稿ãã¾ããã深層å¦ç¿ã使ã£ã¦çæéã®å¤©æ°äºå ±ãããè«æ "Short-Term Precipitation Prediction with Skip-Connected PredNet" ã§ããä»èªãã¨ææ³ãè«æãããªãæãã§ãããç´ äººçºæ³ã ã£ãã®ãè¯ãã£ãã®ãã2024 å¹´ç¾å¨ã§ 27 件å¼ç¨ããã¦ããããã¼ã¹ã©ã¤ã³ç¨ã«æ¸ãã ConvLSTM ã®å®è£ ãå²ã¨åç §ããã¦ãããæãã®å¤æ´»èºãã¾ãããç 究è ã«ãªãæåã®ä¸æ©ã¨ãã¦æãåºæ·±ãã§ãã
ãã¨ã¤ã©ã³ã«è¡ã£ãããã¾ãã â 第29回国際情報オリンピック(IOI 2017) イラン大会
ãã®å¹´ã¯ã¤ã³ã¿ã¼ã³ãªã©å¤é¨ã®ããã¸ã§ã¯ãã«é¢ãããã¨ãå¤ãã£ãã®ã¨ãè«æãèªãããã«ãªã£ã¦ãã£ãã®ã§ãèªãã æ¬ã¯å°ãªãã£ãã§ãã
ã¸ã§ã³ã»Lã»ããã·ã¼ããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ãï¼å端ï¼
ãã³ã³ãã¥ã¼ã¿ã®æ§æã¨è¨è¨ãã¨åããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ã®ä¸ççåèã§ããèè é ã®ããã«ãã³ã³ãã¥ã¼ã¿ã®æ§æã¨è¨è¨ãããã¿ããããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ãããããã¿ã¨å¼ã°ãã¾ãããä»ã§ãã©ã£ã¡ãã©ã£ã¡ãåãããªããªãã¾ãããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ãã®æ¹ãçºå±çãªå 容ã§ããµãã¿ã¤ãã«ã«ãå®éçã¢ããã¼ããã¨ããããã«ãå®éã®é度ãæ¶è²»é»åã¯å ·ä½çã«ã©ã®ããããã¨ãããã¨ã軸ã«ãè¨æ¶é層ã並åè¨ç®ãªã©ã®ææ³ã«ã¤ãã¦æ¸ããã¦ãã¾ãã700 ãã¼ã¸ãè¶ ãã大èã§æå¾ã¾ã§ã¯èªãã¦ãã¾ããããææ©å®è¡ã OoO ã®ããããªã©ã¯ CPU ãä½ãéã«åå¼·ãã¾ããã
Hisa Andoãã³ã³ãã¥ã¼ã¿è¨è¨ã®åºç¤ããé«æ§è½ã³ã³ãã¥ã¼ã¿æè¡ã®åºç¤ã
ã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ã®æåãªåæ¸ã§ãããã³ã³ãã¥ã¼ã¿è¨è¨ã®åºç¤ãã¯ãã¿ããã¨éãªãã¨ãããå¤ãã£ãã®ã§ããããã¨èªã¿ã¾ãããããé«æ§è½ã³ã³ãã¥ã¼ã¿æè¡ã®åºç¤ãã®æ¹ã¯ææ©å®è¡ãã¢ã¦ãã»ãªãã»ãªã¼ãã¼å®è¡ãã¹ã¼ãã¹ã«ã©ãªã©æ§è½å¼·åã«æ¬ ãããªãæ¦å¿µã解説ããã¦ããããããã¿ãããã³ã³ãã¯ãã«ã¾ã¨ã¾ã£ã¦ããã®ã§ãã¡ããããèªã¿ã¾ããã
ãã¤ãããã»Mã»ããªã¹ãããã£ã¸ã¿ã«åè·¯è¨è¨ã¨ã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£[ARMç]ã
å®è·µçãªã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£ã®æ¬ã§ããFPGA + System Verilog ã®ã³ã¼ãä¾ãè±å¯ã«ä»ãã¦ãããCPU ãä½ãéã«æ¸ãæ¹ãªã©ãåèã«ãã¾ããã
湯淺 太ä¸ãã³ã³ãã¤ã©ã
ã³ã³ãã¤ã©ã®ææ¥ã§ä½¿ã£ãã®ã¨ãèªä½ CPU ã®ã³ã³ãã¤ã©ãä½ãããã«åèã«ãã¾ããããªã¼ãããã³ã LL(1) æ§æ解æãªã©åºç¤ããã®è©±ããã¤ã¤ãå®éã® Intel ã®ã¢ã»ã³ããªãã³ã³ãã¤ã©ã®ã³ã¼ãä¾ã交ãã¤ã¤ãåºç¤ã¨å¿ç¨ãå¹ åºãæ±ã£ã¦ãã¾ããç§ã¯ã¢ã»ã³ããªãªã©ã¯ãã¿ããã§ä¸éãå¦ã³ãã³ã³ãã¤ã©ã«ã¤ãã¦ãæ¦ãç解ããä¸ã§ãåå¥è§£æãã¬ã¸ã¹ã¿å²ä»ãªã©ã³ã³ãã¤ã©ç¹æã®è©±é¡ããã®æ¬ã§å¦ã³ã¾ããã
å¤§ä¹ ä¿ è±å£ããªãã¬ã¼ãã£ã³ã°ã·ã¹ãã ã®åºç¤ã
OS ã®ææ¥ã®åèæ¸ã§ãããã¨ã³ã¸ãã¢ãªã³ã°ã®ç´°ããã¨ããã«ã¯è¸ã¿è¾¼ã¾ããæ½è±¡çã«ä»çµã¿ã解説ãã¦ããã®ãç¹å¾´ã§ãããããããã¯ã®æ¤åºã»åé¿ãããã¼ã¸ã® Least Recently Used (LRU) éæ¾ãªã©ã¯ãæ å ±ç§å¦ã¨ã¨ã³ã¸ãã¢ãªã³ã°ããã¾ãããã£ã¦ãæãããã¦å¥½ãã§ããã§ããæ£ç´ãOS ãããä¸å¾æã ã¨ããèªèªãããã¾ãâ¦â¦ãæç§æ¸ã«æ¸ãã¦ãããã¨ã¯ä¸éãç解ãã¾ãããããã¯ããã®ãããã¯å®éã® OS ãèªåã§ããããªãã¨å®å ¨ã«ã¯è ¹è½ã¡ããªãã®ã§ããããã
è¤é æãã°ã©ãã»ãããã¯ã¼ã¯ã»çµåãè«ã
ã¿ã¤ãã«ã®éããã°ã©ãã¨ãããã¯ã¼ã¯ã¨çµåãè«ã«ãã©ã¼ã«ã¹ãå½ã¦ãå°éæ¸ã§ããç¹ã«ããã¼ã«ã¤ãã¦è©³ããã§ãã競æããã°ã©ãã³ã°ã§ä½¿ããã¨ã念é ã«è²·ãã¾ããããã©ã¡ããã¨ããã¨ç 究ã®ããã«ãã使ãã¾ããã200 ãã¼ã¸ãããã§ã³ã³ãã¯ãã§ããããããã¤ãã®è©±ãããããã¯ã¼ã¯ã·ã³ãã¬ãã¯ã¹æ³ã®è©±ãçµåãè«ã®ç« ã§ã¯åä½ç復ä½ã®ãã¢ãã¸ã¼ã®è©±ãªã©ãçºå±çãªè©±é¡ãåºã触ãããã¦ããã®ãç¹å¾´ã§ãã
å¦é¨åå¹´
å¦é¨åå¹´ã®ä¸å¤§ã¤ãã³ãã¯ãªãã¨è¨ã£ã¦ãç 究室é å±ã§ããå½æ京大ã«ã§ããã°ããã®æ¹å çã®ã¢ã«ã´ãªãºã ç³»ã®ç 究室ãã鹿島å çã®æ©æ¢°å¦ç¿ç³»ã®ç 究室ãã§é常ã«æ©ã¿ã¾ãããã©ã¡ãã®ç 究室ã«ãå人çã«ã¢ããåã£ã¦å çããã話ã伺ã£ãããã¾ãããããã¾ã§è¿°ã¹ã¦ããããã«å¦é¨äºå¹´ã®ã¨ãã®æ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã®å®è£ ããå¦é¨ä¸å¹´ã®ã¨ãã® PFN ã®ã¤ã³ã¿ã¼ã³ãªã©ã®å¥æ©ããã£ãã®ã¨ãå¦é¨ä¸å¹´ã®ã¨ãã«æ¸ãã天æ°äºå ±è«æã§ã¯é¹¿å³¶å çã«ãæå°ããã ãã¨ã¦ãè¯ãä½é¨ã ã£ãã®ã§ã鹿島ç ãé¸ã³ã¾ãããçµæçã«ãã¨ã¦ãèªç±ã«ç 究ããã¦ããããã¢ã«ã´ãªãºã ã£ã½ãç 究ãã§ãã鹿島ç ã«å ¥ã£ã¦ã¨ã¦ãè¯ãã£ãã¨æã£ã¦ãã¾ããæ¹å çã¨ã¯ãã®å¾ AFSA ãªã©ã§è»½ããã£ã¹ã«ãã·ã§ã³ããã¦ããã ããã¨ã¦ã楽ããã£ãã®ã§æ¹ç ã«å ¥ã£ã¦ãã if ãè¯ãã£ããã¨ã«ã¯éãããã¾ãããã
ã¾ããå¦é¨åå¹´ã®ã¨ãã«ã¯ ACM ICPC ã®ã¸ã£ã«ã«ã¿å¤§ä¼ã§ 2 ä½ã«ãªããä¸ç大ä¼ã«ãé²åºãã¾ããã大å¦ã§ãã£ã¦ãã競æããã°ã©ãã³ã°ã®é大æã®ãããªå½¢ã§çµæãæ®ããã®ãã¨ã¦ãå¬ããã£ãã§ãã
å¦é¨åå¹´ã®ååã¯é¢è©¦åå¼·ãè¥å¹²ããã¤ã¤ããããããã¯ç 究ã大ããªã¦ã§ã¤ããå ãã¦ãããã¨ã«ãªãã¾ãããã®ãããæ å ±æºã¯ææ¸ãããè«æãä¸å¿ã¨ãªã£ã¦ãããã¾ãææ¸ãèªãã«ãã¦ã 1 åãè °ãæ®ãã¦èªãã¨ããããã¯å¿ è¦ãªã¨ããã ãã確èªããã¨ãããããªä½¿ãæ¹ããããã¨ãå¤ããªã£ã¦ãããããç´¹ä»ã§ããæ¬ã¯å°ãªããªãã¾ãã
éè°· å¥ä¸ããããªãåããæé©åæ°å¦ã
é¢è©¦ãè¦æ®ãã¦ç 究室ã®åæã§è¼ªè¬ãè¡ãã¾ãããå¾é éä¸æ³ããã¥ã¼ãã³æ³ãªã©ã®æ¨æºçãªãããã¯ã®ã»ããEM ã¢ã«ã´ãªãºã ãã¹ããªã³ã°ãããã³ã°ãªã©ã¾ã§å«ã¾ãã¦ãããæ©æ¢°å¦ç¿ãªã©ã®ãã¼ã¿ç§å¦åéã¨ã®æ¥ç¶æ§ãããæé©åã®æç§æ¸ã ã¨æãã¾ãã
ä¸å· è£å¿ãæ©æ¢°å¦ç¿ã
ãã¡ããé¢è©¦ãè¦æ®ãã¦ç 究室ã®åæã§è¼ªè¬ãè¡ãã¾ããããã¯ããã¦ã®ãã¿ã¼ã³èªèããæ©æ¢°å¦ç¿ã®ã¦ã¼ã¶ã¼ã¨ãã¦ç¥ã£ã¦ãããããã¨ãå¦ã¹ãã®ã«å¯¾ãã¦ããã¡ãã¯æ©æ¢°å¦ç¿ææ³ãä½ã£ãããæ©æ¢°å¦ç¿ãå°éã¨ããããã«ç¥ã£ã¦ãããæ¹ãè¯ããã¨ãããã¾ã¨ã¾ã£ã¦ãã¾ããPRML ã»ã©ã¯é£ãããªãã大å¦ã§ã®æ©æ¢°å¦ç¿ã®æç§æ¸ã¨ãã¦ã¡ããã©è¯ãã¨æãã¾ãã
é å±± æ¦å¿ããã¤ãºæ¨è«ã«ããæ©æ¢°å¦ç¿å ¥éã
é¢è©¦ã®åå¼·ã®ããã«ç¬å¦ç¨ã«ä½¿ãã¾ãããä»ãæããã¤ãºã«è¥å¹²ã®è¦ææèï¼ææ³ãè¦æã¨ãã§ã¯ãªããç§ã®ç解ãçãã¨ããæå³ã§ãï¼ãããã®ã§ãããåãããªããªã£ãã¨ãã«åºæ¬ã«ç«ã¡æ»ãããã«ä»ã§ããã®æ¬ãåç §ãããã¨ãããã¾ãã
ä½è¤ æåºãç³åãã²ã¼ã ã®æ°å¦ã
çµåãã²ã¼ã çè«ã«ã¤ãã¦æç§æ¸ã§ããæè¿ãçµåãã²ã¼ã çè«ã®ä¸çããä¸æ¢ãããæ«çºããã主å¬ãããã¡ãã®æ¬ã®è¼ªè¬ã«èªã£ã¦ããã ãåå ãã¾ãããå®ã¯æ«çºããã¯é«æ ¡ã®å 輩ã§ãç§ãé«æ ¡ 2 å¹´çã®ã¨ãã®æè²å®ç¿çã§ãããã¾ãããã®ã¨ãã«ãã ãã¯ããã¨ããçµåãã²ã¼ã çè«ã®è¬ç¾©ãåãããã®å¾ã競æããã°ã©ãã³ã°ã§ãçµåãã²ã¼ã çè«ç³»ã®åé¡ã«ã¯ãã°ãã°è§¦ãã¦ãããçµåãã²ã¼ã çè«ã¨ã¯ä½ãã¨ãç¸ãããã¾ãã競æããã°ã©ãã³ã°ã§ã¯å ¸åã²ã¼ã ã¯æ®éã®ãã ã¨ã¯ã¤ããããããã§ããããã¡ãã®æ¬ã¯å¶éãã ã«ã¤ãã¦ã®ããã¢ãã¯ãªå®çãããã®ã»ãæ§ã ãªã²ã¼ã ãç´¹ä»ããã¦ãã¾ããããºã«çãªé ã®ä½æã¨ãã¦ãé¢ç½ãã£ãã§ãã
Gabriel Peyré et al. "Computational Optimal Transport" â
æ©æ¢°å¦ç¿ + æé©è¼¸éã®æåãªæç§æ¸ã§ããè¨è¿°ãåããããããå¿ç¨ä¾ãè±å¯ã§ã¨ã¦ãè¯ãæ¬ã§ãã測度ãæèããã«èªããå°ã®æã¨ãé¢æ£æ¸¬åº¦ã®å²ã¿æã¨ãä¸è¬æ¸¬åº¦ã®å²ã¿æã«åããã¦ããç¹ãå¿ç¨è ã«åªããã¨ã¦ãè¯ãããæ¹ã ã¨æãã¾ããå½æã¯æ¸¬åº¦è«ã«ã¤ãã¦ãã¾ãåãã£ã¦ããããããããã®æ¬ã®è¨è¿°ã対訳æã®ããã«ãã¦æ¸¬åº¦è«ã®æ¦è¦³ãæ´ããã¨ãã§ãã¾ãããæå°æå¡ã®å±±ç°ããã®ç¸ã§ãå¦é¨ååã®çµããããã«å½æ ENSAE/Google Paris ã® Marco Cuturi ã¨å ±åç 究ãããã¨ãå ã«æ±ºã¾ãã決ã¾ã£ã¦ããæ ã¦ã¦ãã¡ãã§æé©è¼¸éãå¦ã³ã¾ããããã£ããã¯æ¥ã§ããããä»ã§ã¯èªåã®å°éãããã¯ã®ä¸ã¤ã¨ãªãã¾ããããã®åå°ãç¯ãã¦ãããã¨ããç¹ã§ãé ãä¸ãããªãä¸åã§ãã
修士課ç¨
修士ä¸å¹´ã®éã¯ã¾ã å士課ç¨ã«é²ãããã¨ã³ã¸ãã¢ã¨ãã¦å°±è·ããã決ãããã¦ãã¾ããã修士ä¸å¹´ã®å¤ã«ã¡ã«ã«ãªã«ãµãã¼ã¤ã³ã¿ã¼ã³ã«è¡ããç§ã«ã¯ Marco ã®ãããã©ã³ã¹ã« 1 ã¶æã¡ãã£ã¨æ»å¨ãã¾ãããã©ã¡ããã¨ã¦ã楽ããçµé¨ã§ãããè«æãé£ç¶ãã¦ä¸æ¡æããã¦ç 究ã«ã¤ãã¦è½ã¡è¾¼ãã ææãããã¾ãããã修士ä¸å¹´ã®å¤ã«ã¯ãã㦠NeurIPS ã«è«æãæ¡æããããã¨ããããå士課ç¨ã«é²ããã¨ã決ãã¾ããã
修士ä¸å¹´ã®çµããã修士äºå¹´ã®å§ã¾ãããã«æ°åã³ããã¦ã¤ã«ã¹ã®ãã³ãããã¯ãã¯ãã¾ãã¾ãããå¦ä¼ãªã©ã«ãã¾ãåå ã§ããªãã£ãã®ã¯æ®å¿µã§ãããç§ã¯ãã¨ãã¨å¼ããããä½è³ªã ã£ãã®ã§ãçæ´»ã«ã¯ããé å¿ã§ãã¾ãããããããå¼ããããã°ã»ãæªåãã¦ãã¾ã£ãã®ãã³ããç¦ã®å¼å®³ãªããã«æãã¾ãã
論文読みの日課について - ジョイジョイジョイ ã§ç´¹ä»ãã¦ããè«æèªã¿ã®æ¥èª²ã¯ä¿®å£«ä¸å¹´ã®çµããé ããã¯ããã¾ããããã®ãã¨ããããã¾ãã¾ãæ å ±æºã¯ææ¸ãããè«æãä¸å¿ã¨ãªã£ã¦ããã¾ããã
éè°· å¥ä¸ããããªãåããå¿ç¨æ°å¦æ室ãâ
è²·ã£ãã®ã¯éååã§ãããããã£ããèªãã ã®ã¯ä¿®å£«ã®é ã ã£ãã¨æãã¾ããå¦é¨ã»ä¿®å£«ãéãã¦ãã¼ãªã¨å¤æãå«ãè¬ç¾©ãåããªãã£ãã®ã§ãããæµç³ã«ãã¼ãªã¨å¤æãç¥ããªãã¨ããºãã¨æã£ã¦èªã¿ã¾ãããç´äº¤åºåºã®è©±ãªã©ãã¼ãªã¨å¤æã®å段ã¨ãªãã¨ããããä¸å¯§ã«æºåãããã¨ã¦ãåããããããç¬å¦ã«ãã´ã£ããã§é常ã«ããããã§ãã
æ²³å å伸ããå£ã¢ã¸ã¥ã©æé©åã¨æ©æ¢°å¦ç¿ã
å£ã¢ã¸ã¥ã©æé©åã¯æ©æ¢°å¦ç¿ã¨çµåãæé©åã®ä¸¡æ¹ã«é¢ä¿ãæ·±ãã§ããç§ã®èå³ã¨ãè¿ãã¯ããªã®ã§ããããã¾ã§ãã¾ããç¸ãããã¾ããã§ãããIBIS 2019 ã§ç¸é¦¬ãããå£ã¢ã¸ã¥ã©æ大åã®ãã¥ã¼ããªã¢ã«ãããã¦ãã¦ãæ°ã«ãªã£ã¦è³¼å ¥ãã¾ãããããã¾ã§ã¯å£ã¢ã¸ã¥ã©âåç©«éæ¸ã¨ããã¤ã¡ã¼ã¸ãããªãã£ãã®ã§ãããèªãã§ã¿ãã¨ææ¸è¦ç´ãç¹å¾´é¸æãã«ãããªã©ãããããã®ãå£ã¢ã¸ã¥ã©ã«è¦ãã¦ãã¾ãããçµåãçãªè©±é¡ãå¤ããç§ã®èå³ã«ã´ã£ããã§ããã
å¢ç° ç´ç´ããè¤éãããã¯ã¼ã¯ã
競æããã°ã©ãã³ã°ã§ã°ã©ãçè«ãã°ã©ãã¢ã«ã´ãªãºã ã¯ãããã触ãã¦ãã¾ãããããã®æ¬ãèªãã¾ã§ã¯ããããã¯ã¼ã¯ç§å¦ã¨ããã°å 次ã®éãããã¹ãåããªãã¨ãªãèãããã¨ããããããã§ãããä½æ°ãªãæã«åã£ãã®ã§ããã¨ã¦ãé¢ç½ãã£ãã§ããSIRã¢ãã«ã¯ã³ããç¦ã®ã¨ãã«ææçã®æµè¡ã¢ãã«ã¨ãã¦è©±é¡ã«ãªãã¾ãããã
Mark Newman "Networks"ï¼å端ï¼
ãè¤éãããã¯ã¼ã¯ããé¢ç½ããæ¬æ ¼çã«å¦ã¶ã¹ãèªã¿å§ãã¾ãããã¨ã¦ãé¢ç½ãã£ãã®ã§ããã大èã®ããèªã¿åããã¨ã¯ã§ããããã¾ã«é¢é£ãã話é¡ã確èªããããã«åç §ãããããã«çã¾ã£ã¦ãã¾ãã
Deepayan Chakrabarti et al. "Graph Mining: Laws, Tools, and Case Studies"
å½æï¼ä»ãã§ããï¼Christos Faloutsos å çã®ç 究ã®å¤§ãã¡ã³ã§è³¼å ¥ãã¾ãããå 容ãèå³ã®ãã話ã°ããã§æ¥½ããèªãã¾ãããç 究室ã«ç½®ãã¦ããã®ã§ä»æå ã«ãªãåç §ã§ãã¾ããããpreferential attachment ãªã©ã®åºæ¬äºé ã¯ãã¡ããããã®ã°ã«ã¼ããåãå ¥ãã¦ãã R-MAT ãªã©ã®ã°ã©ãçæã¢ãã«ãçµæ§è©³ããè¼ã£ã¦ããå°è±¡ã§ããSIRã¢ãã«ã®ãããªè¤éãããã¯ã¼ã¯ã®è©±ããããPageRank ã HITS ãªã©ã®ã¢ã«ã´ãªãºã ã®è©±ããããã°ã©ããã¤ãã³ã°ã«ã¤ãã¦ããªãå¹ åºãã¨ããæãã®å 容ã§ãã
Stephen Boyd et al. "Convex Optimization" â
å¸æé©åã®ããã®ä¸ççåèã§ããè¨è¿°ãã¨ã¦ãåããããããä¾ãè±å¯ã§ãæ±ã£ã¦ããç¯å²ãã¨ã¦ãå¹ åºããããã«ãªã£ãæ¸ç±ã©ã³ãã³ã°ã§ã¯ãããã¯ã©ã¹ã§ãããã®æ¬ãèªãã¾ã§ã¯é£ç¶æé©åã«ã¯è¦ææèãããã¾ããããå æãããã¨ãã§ãã¾ããããCPU ã®åµãæ¹ãã®é ã§ãè¿°ã¹ã¾ããããæ¬ã®ä¾¡å¤ã¯æ¬ãèªãåã¨èªãã å¾ã®å·®ï¼ä»å ¥å¹æï¼ã«ããã¨èãã¦ããããã®ç¹ã§ç§ã«ã¨ã£ã¦ç¸å½ãªä¾¡å¤ã®ããæ¬ã§ããããã¡ããçæ³ã®æ¸ç±ã®ä¸ã¤ã¨å¿ã®ä¸ã§å´ããªãããèªåãããã¹ããæ¸ãã¨ãã«ãã¤ã³ããã²ã£ããåèã«ãã¦ãã¾ãã
Roman Vershynin "High-Dimensional Probability" â
ãã¼ã¿ãµã¤ã¨ã³ã¹å¿ç¨å¯ãã®ç¢ºççµ±è¨ã®å°éæ¸ã§ãã確ççµ±è¨ã®æç§æ¸ã¨ãªãã¨ã確çã®å ¬çãªã©ããã¯ãã¾ãã«ãããªãããã®ãããããã¯å¿ç¨ã«æ¯ãåã£ããã®ã®ã©ã¡ãããå¤ãå°è±¡ã§ããããã¡ãã¯å¿ç¨ãè¦æ®ããçè«ã«ã¤ãã¦å¦ã¹ãç¨æãªæ¬ã§ããã«ãã¼ãã¦ããç¯å²ãã¨ã¦ãåºããã«ããªã³ã°ãã³ãã¼ã VC 次å ã®ãããªæ©æ¢°å¦ç¿å¯ãã®è©±ãããã©ã³ãã ã°ã©ãã®è©±ãæ大ã«ããã® SDP è¿ä¼¼ã¢ã«ã´ãªãºã ã®è©±ã¾ã§æ§ã ã§ããæ©æ¢°å¦ç¿ã®çè«å¯ãã®ç 究ããããæ¹ã¯ãã²ã¨ãããããã§ãã
Vijay V. Vazirani "Approximation Algorithms"
è¿ä¼¼ã¢ã«ã´ãªãºã ã®æç§æ¸ã§ããå½æ "Approximation Ratios of Graph Neural Networks for Combinatorial Problems" ã "Random Features Strengthen Graph Neural Networks" ãªã©è¿ä¼¼ã¢ã«ã´ãªãºã ã«é¢ããç 究ããã¦ããã®ã§ããã£ã¨ãã£ã¡ãå¦ã¶ããã«èªã¿ã¾ãããTSPããã³ãããã³ã°ãéå被è¦ãªã©ã®æååé¡ã®è¿ä¼¼ã¢ã«ã´ãªãºã ãä¸ã¤ãã¤è¨è¨ããªãããè¨è¨ææ³ãå¦ãã§ããã¦ãã¹ã ã¼ãºã«åã®ã¤ãè¯ãæ¬ã ã¨æãã¾ãã
Krishna B. Athreya "Measure Theory and Probability Theory"ï¼å端ï¼
æé©è¼¸éãç 究ããããã§æ¸¬åº¦è«ã¯ãã¯ãé¿ãã¦ã¯éãããæ¬æ ¼çã«å¦ã¶ããã«è³¼å ¥ãã¾ãããç©åã®å®ç¾©ã®ãããã¾ã§ãã£ããèªã¿ãåæã«ã¤ãã¦ã®è©±ãªã©ãã¤ã¾ã¿é£ããã¦ããã¨ã¯è¾æ¸ä»£ããã«ä½¿ã£ã¦ããã¨ããæãã§ãã
Sheldon Axler "Linear Algebra Done Right"ï¼å端ï¼
ä½ç¨ç´ è«ãªã©ã念é ã«ç½®ãã¤ã¤ãå¾æ¥ã¨ã¯éã£ãã¢ããã¼ãããã®ç·å½¢ä»£æ°ã®æç§æ¸ã§ããä¸ã«è¿°ã¹ãæè¤ æ¯ ãç·å½¢ä»£æ°ã®ä¸çãã¨ãå°ãè¿ãæ°ããã¾ããããã®æ¬ã¯ããã¾ã§æ½è±¡çã§ã¯ãªãæããããªå°å ¥ã ã£ãå°è±¡ã§ãããã®é ãç·å½¢ä»£æ°ã®ç´è¦³ãå¾ããã¨ã«è¦å¿ãã¦ãããã®æ¬ã«å½ããã¾ããããã®é æ¸ããã®ã 実対称行列が直交行列で対角化できる直感的な証明 - ジョイジョイジョイ ã§ãã
ããã«ãã»ã°ã©ãã ããã³ã³ãã¥ã¼ã¿ã®æ°å¦ãï¼å端ï¼
ããã¾ã§ãä½åº¦ã触ãã¦ã¯ããã®ã§ããããã®é ãæãªã¨ãã«æ¼ç¿åé¡ã解ããããã¦ãã¾ããã合同な凸図形でn要素ベン図を構成する方法 - ジョイジョイジョイ ã¯ãã®æã®è©±ã§ããå½ç¶ä¸èº«ãé¢ç½ãã®ã§ãããçµçããããªããã ãã£ã¦ãã¦ãçå¾ã®å£°ãæ±ã«è¼ã£ã¦ãããªã©ã®ã®ããã¯ãé¢ç½ããèªãã§ãã¦æ¥½ããã§ãããã£ããæ¼ç¿åé¡ã解ããããã±ãã±ãé¢ç½ãããªç« ãçºãããã触ãåã£ã¦ããæéã¯é·ãã®ã§ãããéèªã¯æªã å¶ãããã¦ãã¾ããã
å士課ç¨
å士ã«é²ãã§ããã¯ç 究ã»ã¨ãã©ä¸çã§ããå士è«æã®ä¸éçºè¡¨ããã¾ããã¾ãããããéä¸ã§ Readable ã®éçºã«æµ®æ°ãããããææãããã¾ããããã¾ããããåºãæå³ã§ã¯ç 究ã§ããããã®æã«ã¯ã¨ã³ã¸ãã¢ã«ãªããã¨ã¯é ã«ã¯ãªããåºæ¬çã«ç 究ã®ãã¨ãèãã¦ããããã«æãã¾ãã
é森 æ¬æããæ©æ¢°å¦ç¿ã®ããã®é£ç¶æé©åã
å 容ã¯ã¿ã¤ãã«ã®éãã§ããæ©æ¢°å¦ç¿ã®ããã®é£ç¶æé©åã¨ãããã³ãã¤ã³ããªãããã¯ã§ãããªãã 351 ãã¼ã¸ã¨åæå°éæ¸ã¨ãã¦ã¯ã¨ã¦ãååããããªãåºã話é¡ãã«ãã¼ããã¦ãã¾ããå®çã®è¨¼æãä»ãã¦ããã®ãé åçã§ããåæãã¤ä¸åº¦ãããµã¤ãºæãªã®ã§ãé£ç¶æé©åã«ã¤ãã¦åç §ããã¨ãã«ã¯ã¾ãã¯ãã®æ¬ãéãã次ã㧠Boyd ã® Convex Optimization ãªã©ã®æ´æ¸ãå½ãããã¨ãå¤ãã§ãã
æ¢ è°· ä¿æ²»ããã£ããå¦ã¶æ°çæé©åã
æ°çæé©åå ¨è¬ã®æç§æ¸ã¨ãã¦ã¯åæ¸ã®ãªãã§ä¸çªããã¾ã¨ã¾ã£ã¦ããã¨æãã¾ããé£ç¶æé©åã»é¢æ£æé©åã®ä¸¡æ¹ãæåºãæ±ã£ã¦ããã®ãç¹å¾´ã§ããå½æ Twitter ã§è©±é¡ã«ãªã£ã¦ããã®ã§èªã¿ã¾ãããæ¢ã« Boyd ã® Convex Optimization ã Vazirani ã® Approximation Algorithms ãªã©ãèªãã å¾ã ã£ãã®ã§ãæªç¥ã®å 容ã¯ã»ã¨ãã©ç¡ãã£ãã§ãããç¥èãæ¹ãã¦æ´çããã®ã«ã¯å½¹ç«ã¡ã¾ããããã«ã«ã©ã¼ã§å³ãªã©ãè¦ããããå¦é¨çã®ã¨ãã«åè¡ããã¦ããã°ãã¡ãã§åå¼·ãã¦ããã ããã¨æãã¾ãã
çµå 浩ãæå·æè¡å ¥éãâ
æåãªæå·æè¡ã®æç§æ¸ã§ãããã£ã¨æ°ã«ã¯ãªã£ã¦ããã®ã§ããã"Embarrassingly Simple Text Watermarks" ã§é»åéããé¢ä¿ã®ç 究ãããã«ããã£ã¦éèªãã¾ãããæµç³ã説æãã¨ã¦ãåããããããã¾ãå ¥éæ¸ã¨ãããªããã奥深ãã¨ããã¾ã§èª¬æãããåå¼·ã«ãªãã¾ãããã¡ãã£ã¨ãããããã ãã®äººãã¬ãããªå¦ã³ãã人ããæå·æè¡ãé¢é£æè¡ãå¦ã¶ã«ã¯æé©ãªæ¬ã ã¨æãã¾ãã
ææ© å¤§å°ããã¬ã¦ã¹éç¨ã¨æ©æ¢°å¦ç¿ã
ã¬ã¦ã¹éç¨ã¯ãã£ã¨ãªãã¨ãªãç¥ã£ã¦ããã¨ããç¶æ ã§ãè«æãèªãã¨ãã«ãé°å²æ°ã§ãã¾ããã¦ããç¯ããããæ°æã¡æªããªã£ãã®ã§ãã¡ãã§ãã£ããåå¼·ãã¾ãããããåºæ¬çãªã¨ããããã¯ãã¾ããã¬ã¦ã¹éç¨ã®ã¤ã¡ã¼ã¸ã®å°å ¥ãããã使ãæ¹ãå¦ã¶ãã¡ã«æå¾ã¯ç 究ã«è¿ãã¨ããã¾ã§å¼ãä¸ãã¦ããã¾ããè©å¤ã«éããªãç´ æ´ãããæ¬ã ã¨æãã¾ãããã¯ã MLP ã·ãªã¼ãºã¯ç¹å®ã®ãããã¯ãå¦ã¶ã®ã«ã¨ã¦ã便å©ã§ããã
ç¬æ¸ éçããæ©æ¢°å¦ç¿ã®ããã®é¢æ°è§£æå ¥éã
ã«ã¼ãã«æ³ã®å ¥éæ¸ã§ããç 究ã§ã¡ããã¡ããã«ã¼ãã«æ³ã«è§¦ãã¦ã¯ãããã®ã®ãç¦æ°´å çã®è¬ç¾©è³æããã©ãã©èªããããã§ä½ç³»çã«ã«ã¼ãã«æ³ãåå¼·ãããã¨ããªãã£ãã¨ãããæãããåºçãããã®ãè¦ããã¦èªã¿ã¾ããã150 ãã¼ã¸ãããã®ã³ã³ãã¯ããªãµã¤ãºã§ã«ã¼ãã«æ³ã«ã¤ãã¦ä¸éãããããã®ã§è¯ãã£ãã§ãã
ç¸é¦¬ è¼ããçµåãæé©åããæ©æ¢°å¦ç¿ã¸ã
çµåãæé©åã¨æ©æ¢°å¦ç¿ã¨ããç§ã®èå³ã©çãä¸ã ã£ãã®ã§çºå£²å¾ããã«è²·ã£ã¦èªã¿ã¾ãããå 容ã¯å£ã¢ã¸ã¥ã©æé©åã軸ã«ãã°ã©ããã¤ãã³ã°ãè½åå¦ç¿ãªã©é¢é£ãããã¼ã¿ãã¤ãã³ã°ã¨æ©æ¢°å¦ç¿ã®ãããã¯ã«ã¤ãã¦ã§ããã°ã©ãä¸ã®æ å ±æ¡æ£ãªã©ã¯ãã¼ã¿ãã¤ãã³ã°ç³»ã®ä¼è°ã§ããã³ãã³èªãã§ããã®ã§ãããæ£çºçãªç¥èã ã£ãã®ãæ¹ãã¦å¦ã¹ã¦ããã£ãã§ããã¾ããç´¹ä»ããã¦ããã¢ã«ã´ãªãºã ã¯çè«ã証æããã¬ã¤ãã®ãå¤ããèªãã§ãã¦æ¥½ããã£ãã§ããåç´ãªã¢ã«ã´ãªãºã ã§éèªæãã¤ããããªçè«ä¿è¨¼ãä»ãã¦ãããã®ã好ããªäººã¯æ°ã«å ¥ãã¨æãã¾ãã
ä»æ³ å è¡ã深層å¦ç¿ã®åçã«è¿«ãã
深層å¦ç¿ã®çè«ãä¸è¬åãã«è§£èª¬ããæ¸ç±ã§ããçè«ã®ç´è¦³ãã¨ã¦ããã示ããã¦ãããæ°å¼ãã»ã¨ãã©ç»å ´ããªãã®ã«å®å ¨ã«ç解ããæ°æã¡ã«ãªãã¾ããã¡ããã¨ç解ãã¦ããèè ããç´°ããæã¯ç½®ãã¦ããã¦æ¬è³ªçãªé¨åãæãåºãã¦èª¬æãã¦ããæããä¼ãã£ã¦ãããçæ³çãªä¸è¬åãã®è§£èª¬æ¸ã§ããããç¨åº¦ã¯æ·±å±¤å¦ç¿ã®çè«ã«é¦´æã¿ãããã¾ãããããã¾ãèããã¾ã¨ã¾ã£ã¦ãªãã£ãã¨ããã«æå¿«ãªèª¬æãã¹ãã¨å ¥ã£ã¦ãã¦è ã«è½ã¡ããããã¾ãããB6 ç㧠100 ãã¼ã¸å¼·ãªã®ã§æ軽ã«èªããç¹ãå¬ããã§ãã
鹿島 ä¹ å£ãããã¥ã¼ãã³ã³ã³ãã¥ãã¼ã·ã§ã³ã¨ã¯ã©ã¦ãã½ã¼ã·ã³ã°ã
ä»æ´ã§ããæå°æå¡ã®æ¬ãèªã¿ã¾ãããç 究室ã«ã¯ã¯ã©ã¦ãã½ã¼ã·ã³ã°ç³»ã®ãã¨ããã£ã¦ãã人ã¨æ©æ¢°å¦ç¿ç³»ã®ãã¨ããã£ã¦ãã人ããããç§ã¯æ©æ¢°å¦ç¿ç³»ã ã£ãã®ã§ãã¯ã©ã¦ãã½ã¼ã·ã³ã°ã®è©±ã¯ç 究ä¼ãªã©ã§èãããã£ã¦ããç¨åº¦ã§ããããæ¹ãã¦èªãã¨ææ§ã ã£ãç¥èãã¾ã¨ãããã¦è¯ãã£ãã§ããreCAPCHA ãã¡ã«ããºã ãã¶ã¤ã³ãªã©ã話ã¨ãã¦é¢ç½ããããã¯ãå¤ããèªãã§ãã¦æ¥½ããã£ãã§ãã
ä½ä¹ é æ·³ãããã¼ã¿è§£æã«ããããã©ã¤ãã·ã¼ä¿è·ã
ã¿ã¤ãã«ã®éãããã¼ã¿è§£æã«ããããã©ã¤ãã·ã¼ä¿è·ã®æç§æ¸ã§ããå·®åãã©ã¤ãã·ã¼ãç§å¯è¨ç®ãæºååæå·ãªã©ã®ãããã¯ãå¦ã¹ã¾ãã"Making Translators Privacy-aware on the User's Side" ãªã©ãã©ã¤ãã·ã¼é¢é£ã®ç 究ãããã«ããã£ã¦èªã¿ã¾ãããååã§ã¯å®ä¸çã§ã®ãã©ã¤ãã·ã¼ã®äºä¾ãæ³å¾ã«ã¤ãã¦è§£èª¬ããã¦ããããã©ã¤ãã·ã¼ã«é¢ãããã¼ã¿ãæ±ãå®å家ã®äººãã¡ã«ãå½¹ç«ã¤ã¨æãã¾ããNetflix ãå¿ååãã¦å ¬éãããã¼ã¿ã IMDb ã®ãã¼ã¿ã¨çªãåããããã¨ã§ã¢ã«ã¦ã³ããç¹å®ã§ããããAOL ãå¿ååãã¦å ¬éããæ¤ç´¢ãã°ãã¼ã¿ããç¹å¾´çãªæ¤ç´¢ã¯ã¨ãªãçµã¿åããããã¨ã§å人ãç¹å®ã§ãããã¨ãã£ããã¨ã¯è©±ã¨ãã¦ãé¢ç½ãã£ãã§ããå·®åãã©ã¤ãã·ã¼ã®ãããã¯æ°ççã«ããã£ããæ¸ããã¦ãããç 究ãããéã«ãããåç §ãã¦ä¾¿å©ã§ããã
ããã¼ãï¼ã¢ã³ãã¼ï¼ã¢ãã¼ã¯ãHuman-in-the-Loop æ©æ¢°å¦ç¿ã
ã¡ã«ã«ãªã®ã¤ã³ã¿ã¼ã³ã§ãä¸è©±ã«ãªã£ã @hurutoriya ããã訳è ã¨ãã¦åå ããã¦ããããã®ãç¸ã§å ±ç«åºçãã¾ãããæµè´ããã ãã¾ãããæ©æ¢°å¦ç¿ã«ã¨ã£ã¦ã¨ã¦ãéè¦ãªããããè¦è½ã¨ãããã¡ãªãã¼ã¿ã®æºåã人éã¨ã®é¢ããã«ã¤ãã¦ã®å¹ åºãç¥è¦ãè©°ã¾ã£ãç¨æãªæ¬ã§ãã詳ããæ¸è©ã¯ 『Human-in-the-Loop 機械学習』 - ジョイジョイジョイ ã«ã¾ã¨ããã®ã§ãã¡ããã覧ãã ããã
Hisa AndoãGPUãæ¯ããæè¡ã
深層å¦ç¿ã§ã¦ã¼ã¶ã¼ã¨ãã¦å©ç¨ãããã¨ã¯å¤ããã®ã®ãGPU ã®ä»æ§ãããç解ã§ãã¦ããªãã£ãã®ã§èªã¿ã¾ããã深層å¦ç¿ç¨éã念é ã«ç½®ãã¤ã¤ãå¾æ¥ã® CG å¿ç¨ãå«ã㦠GPU ã®æè¡ãä¸éãå¦ã¹ã¾ããã
æ¸æ ¹ å¤ããããã¯ã¼ã¯ã¯ãªãã¤ãªããã®ããâ
ã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯ã«ã¤ãã¦æåãªåæ¸ã§ããã¦ã¼ã¶ã¼ããã©ã¦ã¶ã« URL ãå ¥åãã¦ããã¦ã§ããã¼ã¸ã表示ãããã¾ã§ã®æ å ±ã®çµè·¯ããã¢ã¼ã¬ã¤ãããã¨ããå½¢ã§ãããã¯ã¼ã¯ã«ã¤ãã¦è§£èª¬ããªããã¾ãããã¢ã¼å½¢å¼ãè¦äºã§ããå®éã®åä½ãã¤ã¡ã¼ã¸ãããããèªãã§ãã¦ã¯ã¯ã¯ã¯ãã¾ãããè¨è¿°ãé常ã«ä¸å¯§ã§ãå ¥éæ¸ã§ãããªããæ·±ãã¨ããã¾ã§è§£èª¬ãããã¾ããåè¿°ã®ããã«ã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯ã«ã¯è¦ææèãããã¾ããããæ¬æ¸ã®ãããã§éååããã¾ãããã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯ãå¦ã¶æåã®ä¸åã¨ãã¦ã¯æé©ã ã¨æãã¾ãã
Jorge Nocedal et al. "Numerical Optimization"
ä¸ççã«æåãªæé©åã®æç§æ¸ã§ãããã¡ãã Boyd ã® Convex Optimization åæ§ã«è¨è¿°ãé常ã«ä¸å¯§ã§ããç·å½¢è¨ç»ã®æ±ãã詳ããã£ãããã¼ã次æé©åãªã©ãå«ãéå¸æé©åã¾ã§æ±ã£ã¦ããã®ãç¹å¾´ã§ããBoyd ã® Convex Optimization ãèªãã ãã¨ãè£å®çã«æé©åã®ç解ãæ·±ãããæ¹ã«ããããã§ãã
Guido W. Imbens et al. "Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction"
å ææ¨è«ã®ä¸çç権å¨ã®ãäºäººãå·çããå ææ¨è«ã®æç§æ¸ã§ãã"Twin Papers: A Simple Framework of Causal Inference for Citations via Coupling" ãªã©å ææ¨è«é¢ä¿ã®ç 究ãããããã«åå¼·ãã¾ãããå¾åã¹ã³ã¢ééã¿ä»ãããããã³ã°ãªã©å ¸åææ³ã ãç¥ã£ã¦ããç¶æ ã§ãããããã£ãã·ã£ã¼ã®å³å¯på¤ãªã©åºæ¬çãªã¨ããããæ¹ãã¦åå¼·ããã¨ç解ãæ·±ã¾ã£ã¦è¯ãã£ãã§ããå®éã«ãã¼ã¿ã使ã£ã¦è¨ç®ã»åæãããä¾ãå¤ããã¤ã¡ã¼ã¸ã湧ããããã®ãè¯ãã¨ããã§ãã
Thomas M. Cover et al. "Elements of Information Theory" â
ä¸ççã«æåãªæ å ±çè«ã®æç§æ¸ã§ããã¨ã³ãããã¼ããããã³ç¬¦å·ãªã©å¦é¨ã®ææ¥ã§ãããããªåºæ¬çãªã¨ããã¯ãã¡ããã大åå·®åçãã³ã«ã¢ã´ããè¤éæ§ãªã©çºå±çãªè©±é¡ã詳ããã§ããæ°ççãªå°åºãããªãä¸å¯§ã§ããå¼å¤å½¢ã®ã¨ãã«çå·ã»ä¸çå·ã®ä¸ã« (a) (b) ãªã©ã®è¨å·ãæ¯ã£ã¦å°ã®æã§è§£èª¬ããã¨ããæ¹æ³ãç¹°ãè¿ãç¨ãããã¦ãããç§ããã®ããæ¹ãæ°ã«å ¥ã£ã¦ãã使ã£ã¦ãã¾ããè±èªããã¹ãã®ã¨ã³ãããã¼ã®è©±ããæ å ±éã¨ã®ã£ã³ãã«ã®è©±ãªã©ãæ¿è©±ãé¢ç½ãèªãã§ãã¦å¼ãè¾¼ã¾ãã¾ããæ´æ¸ã«æµæããªããã°ãæ å ±çè«ãå¦ã¶ã®ã«ã¯æé«ã®ä¸åã ã¨æãã¾ãã
ã岩波 æ°å¦å ¥éè¾å ¸ããæåæ°å¦è¾å ¸ã
ããã¾ã§æ°å¦è¾å ¸ãå¼ãã¨ããç¿æ £ã¯ç¡ãã£ãã®ã§ãããæ¸ç±ãå·çããéã«ç解ãææ§ãªã¾ã¾ã§ç¨èªã使ã£ã¦ã¯ãããªãã¨æããå°éããå°ãé¢ããæ°å¦ç¨èªã使ãã¨ããªã©ã«ã¯ããå¼ãããã«ãªãã¾ããã使ãå§ãã¦ã¿ãã¨ãã¡ãã¡æç§æ¸ãå¼ã£å¼µãåºãã¦ããããæçã«ããªã£ã¦ããªã便å©ã§ããããããå¤å ¸çãªãã¼ã«ãå å®ã«ä½¿ããªããããã¹ããæ¸ããããã«ãªãã¨ããã®ããå士課ç¨ã®éè¦ãªè¦ç´ ã ã¨æãã¾ãã
ä½è¤ ç«é¦¬ãæé©è¼¸éã®çè«ã¨ã¢ã«ã´ãªãºã ãâ
èè ã§ããããã¾ã§æ¸ãã¦ããããã«ãç§ã¯æ¬ãèªãã®ãã¨ã¦ã好ãã§ããæ¸ç±åºçãæ診ãããã¨ãã«ã¯ã¨ã¦ãå¬ãããèªåãæ¸ãå´ã«åããããã«ãªãã¨ããã®ã¯ã¨ã¦ãææ ¨æ·±ãã£ãã§ããããããããã¾ã§åº¦ã åãä¸ãã¦ããããã«ãæ©æ¢°å¦ç¿ãããã§ãã·ã§ãã«ã·ãªã¼ãºã¯ç§ãæ©æ¢°å¦ç¿åéã«é²ããã£ããã«ããªã£ãã·ãªã¼ãºã§ãããç 究ã®éã®ãã§ããã³ãã³å©ãã¦ããã ããã·ãªã¼ãºã§ããã
æé©è¼¸éã¯ç¢ºçåå¸ã®æ¯è¼ã®ããã®éå ·ã§ãæ失é¢æ°ã®è¨è¨ããå°ãåã ã¨æµå¯¾ççæãããã¯ã¼ã¯ãæè¿ã ã¨æ¡æ£ã¢ãã«ãªã©ã®çæã¢ãã«ã«ããã使ããã¦ãã¾ããæ¡æ£ã¢ãã«ã«ã¤ãã¦ã¯ã¤ããã®éè¨äºã«ãã¾ããã joisino.hatenablog.com ããããããã¨ã«å¥½è©ãããã ããç¾å¨ç¬¬ 5 å·ã¨ãªã£ã¦ãã¾ããèªåã®æ¸ããæ¬ã«âãä»ããã®ã¯æ°ãå¼ãã¾ãããããã£ã±ãçã«èªãã§ã»ããã®ã§ä»ãã¡ããã¾ãã
ä½è¤ ç«é¦¬ãã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãâ
æ¥æ 25 æ¥çºå£²äºå®ã®ã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ã¤ãã¦ã®æ¬ã§ãããªãçºå£²åãªã®ã«èªãã ãªã¹ãã«å ¥ã£ã¦ãããã¨ããã¨ãèè ã ããã§ãããã®æ¬ã¯èªåã§ãã¨ã¦ãè¯ãæ¸ããã¨æãã¾ããåæ¸ã§ãããªããæ´æ¸ã«ãå¼ããåããªãä¸çä¸ã®å°éæ¸ã«ãããã¨ãç®æãã¾ãããä¸å¯§ã§å¹ ãåºããå¤ãã®äººã«é¢ç½ãã¨æã£ã¦ããããæ¬ã«ãªã£ãã¯ãã§ããç¾å¨æ ¡æ£ä½æ¥ã®çµç¤ã§ãããèªåã§æ ¡æ£ããªããèªãã§ãã¦ãé¢ç½ããªãã¨æ£ç´ã«æãã¾ããããã¾ã§èªåã®ä½åã«å¯¾ããèªä¿¡ããã¾ãç¡ãã£ãã®ã§ãããããããèªåã®ä½åãçæ£é¢ããè¤ããããããã«ãªã£ã¦ãã¾ãããç 究è ã¨ãã¦ã¯ã¾ã æ©ã¿åºããã°ããã§ãããä»å¾ã¾ãã¾ãããä½åãä¸ã«éãåºããããç²¾é²ãããã¾ãã
çµããã«
æ¬ç¨¿ã®å·çã«ããã£ã¦ã¯大学生活の勉学まわりの回顧録ãåèã«ãã¾ãããé½ç«¹ãããä¿®äºãããã¨ãã«ãã®è¨äºãèªã¿ãã¨ã¦ãè¯ãåãçµã¿ã ã¨æãã¾ãããèªåãä¿®äºæã«ã¯ãããã¨ãããã¨ããã£ã¨é ã®çé ã«ããããã®åº¦æ´ãã¦ä¿®äºãã¦æ¬ç¨¿ãæ¸ãéã³ã¨ãªãã¾ããã
ãããã£ã¦ä¸¦ã¹ãã¨ãããããèªãã§ãããã¨ãæãããã¦ææ ¨æ·±ãã§ããæ©ã¿ã¯é ããã¨ãã«ã¯å¾æ»ããããã¨ãããã¾ããããæµç³ã« 9 å¹´éãå¦ã³ç¶ããã¨é ãã¾ã§æ¥ããã¾ããããã¡ããããããããå¤ãã®æ¬ãèªã¿ãæ¸ãã¦ããããã¨æãã¾ããä»å¾ã¨ããããããé¡ããããã¾ãã
å士ï¼æ å ±å¦ï¼ã«ãªãã¾ãã pic.twitter.com/vgWVt9GA8P
— ä½è¤ ç«é¦¬ / Ryoma Sato (@joisino_) 2024å¹´3æ25æ¥
é£çµ¡å : @joisino_ / https://joisino.net