超立方体

立方体の一般化

超立方体(ちょうりっぽうたい、hypercube)とは、2次元正方形3次元立方体4次元正八胞体を各次元に一般化した正多胞体である。なお、0次元超立方体は1次元超立方体は線分である。

4次元超立方体

正測体(せいそくたい)、γ体(ガンマたい)とも言い、n 次元超立方体を と書く。

正単体正軸体と並んで、5次元以上での3種類の正多胞体の1つである。

単に超立方体と言った場合は特に四次元の超立方体(tesseract)を指すこともある。

右図は、四次元超立方体を二次元に投影した図である。立方体を二次元に投影した場合と同様に、各辺の長さや成す角度は歪んでいるが、実際の辺の長さはすべて等しく、角も直角である。胞(立方体)の数は、投影図において外側の大きな立方体、内側の立方体、これら2つの対応する面をそれぞれ結ぶ(対応する稜線を4つ選ぶ)部分に6つあり、胞は計8つである。

作図

編集

超立方体を作図するには、

 

を頂点とし、最も近い(距離2の)頂点同士を辺で結べばよい。複号は全ての組み合わせを取る。

こうして作図された超立方体は、n 次元ユークリッド空間  で表して

 

でも定義できる。

性質

編集

特にことわらない限り、辺の長さが an 次元超立方体について述べる。

超体積は

 

超表面積は

 

である。

ファセット (n - 1 次元面) は n - 1 次元超立方体である。したがって一般に、m (0 ≤ m ≤ n - 1) 次元面は m 次元超立方体である。たとえば、正八胞体(4次元超立方体)の面(2次元面)は正方形(2次元超立方体)、胞(3次元面)は立方体(3次元超立方体)である。

対角線の長さは、

 

である。

m 次元面の個数は

 

である。これはパスカルのピラミッド英語版の第 n + 1 段の三角形の第 m + 1 段(頂点を下にした場合)の数字の総和に等しい。対角線に沿って見た場合、次元面たちは数字通りのグループに分割される。これは、  を二項展開し、  を三項展開することで示すことができる。特に、頂点(0次元面)は   個、辺(1次元面)は   個、ファセットは   個である。 パスカルの三角形の第 n + 1 段の m + 1 番目の数字であり、n - 1 次元単体m - 1 次元面の個数である。

m (0 ≤ m ≤ n - 2) 次元面に集まるl (m + 1 ≤ l ≤ n - 1) 次元面の個数は

 

である。これはパスカルの三角形の第 n - m + 1 段の l - m + 1 番目の数字であり、n - m - 1 次元単体l - m - 1 次元面の個数である。

双対は正軸体である。

任意の l 次元面と m 次元面(lm でもよい)は、接する場合直交し、それ以外は直角ねじれの位置で)か平行である。特に、隣り合うファセットは直交し、それ以外のファセットは平行である。また、頂点には n 本の辺が集まり、互いに直交する。

関連項目

編集

外部リンク

編集