Saltar ao contido

Placoglobina

Na Galipedia, a Wikipedia en galego.
Placoglobina das unións
(junction plakoglobin)
Identificadores
Símbolo JUP
Símbolos alt. ARVD12; CTNNG; DP3; DPIII; PDGB; PKGB
Entrez 3728
OMIM

173325

RefSeq NP_002221
UniProt P14923
Outros datos
Locus Cr. 17 :(41.75 – 41.79 Mb)

A placoglobina, tamén chamada gamma-catenina ou placoglobina das unións (celulares), é unha proteína que nos humanos está codificada no xene JUP do cromosoma 17.[1] A placoglobin forma parte da familia das proteínas cateninas e é homóloga da β-catenina. A placoglobina é un compoñente citoplasmático dos desmosomas e das unións adherentes situadas nos discos intercalares do músculo cardíaco, que funciona ancorando os sarcómeros e unindo as células adxacentes no músculo cardíaco. As mutacións na placoglobina están asociadas coa displasia ventricular dereita arritmoxénica e o pénfigo vulgar.

Estrutura

[editar | editar a fonte]

A placoglobina humana ten un peso molecular de 81,7 kDa e 745 aminoácidos.[2] O xene JUP contén 13 exóns e abrangue 17 kb no cromosoma 17q21.[3] A placoglobina é un membro da familia das cateninas, xa que contén un característico motivo con repeticións de aminoácidos chamado repetición armadillo.[1] A placoglobina é altamente homóloga da β-catenina; ambas as dúas teñen 12 repeticións armadillo e tamén dominios globulares N-terminal e C-terminal de estrutura descoñecida.[4] A placoglobina foi identificada orixinalmente como compoñente dos desmosomas, nos cales pode unirse á proteína desmogleína I, un membro da familia das cadherinas. A placoglobina tamén se asocia con cadherinas clásicas como a E-cadherina; nese contexto, denomínase gamma-catenina. A placoglobina forma complexos coas cadherinas desmosómicas e outras cadherinas.

A placoglobina é un compoñente citoplasmático importante dos desmosomas e as unións adherenrtes, e é o único constituínte coñecido común a placas submembranosas de ambas as estruturas,[5] que están localizadas nos discos intercalares dos cardiomiocitos. A placoglobina enlaza as cadherinas co citoesqueleto de actina. Únese a rexións conservadas da desmogleína e desmocolina nos sitios de unión á catenina intracelulares para ensamblar os desmosomas.[6][7]

A placoglobina é esencial para o desenvolvemento normal dos discos intercalares e a estabilidade do músculo cardíaco. Os ratos transxénicos homocigotos para unha mutación nula do xene JUP morren arredor do 12º día de vida embrional debido a defectos substanciais nas unións adherentes e a falta de desmosomas funcionais no corazón.[8][9] Posteriores estudos indicaron que as fibras cardíacas obtidas do embrión de rato nulo para JUP fixeron diminuír a elasticidade pasiva malia a unión normal dos sarcómeros ás unións adherentes.[10]

En estudos adicionais, creouse un rato knockout para a placoglobina específica cardíaca inducible. Os ratos transxénicos mostraron un fenotipo similar ao dos pacientes humanos de cardiomiopatía ventricular dereita arritmoxénica, con perda de cardiomiocitos, fibrose e disfunción cardíaca, e alteracións no contido proteico do desmosoma e remodelación das unións comunicantes. Os corazóns mostraban tamén un incremento na sinalización da β-catenina.[11][12] Outras investigacións sobre o papel da β-catenina e a placoglobina no corazón fixéronse creando un dobre knockout para estas dúas proteínas. Os ratos estudados presentaban cardiomiopatía, fibrose, anormalidades na transmisión e morte cardíaca súbita, probablemente debida a arritmias ventriculares letais espontáneas. Os ratos tamén mostraron unha diminución nas estruturas de tipo unión comunicante nos discos intercalares.[13]

A expresión de placoglobina intracelular está controlada pola vía de sinalización Wnt e a degradación dependente de ubiquitina/proteasoma. A fosforilación deserinas N-terminais por un “complexo de destrución” composto da glicóxeno sintase quinase 3β (GSK3β) e as proteínas armazón APC (adenomatous polyposis coli) e axina encamiñan a placoglobina á súa degradación.[14][15][16]. O motivo fosforilado é recoñecido pola β-TrCP, unha ubiquitina ligase que ten como obxectivo marcar a placoglobina para a degradación dependente do proteasoma de 26S.[17] A placoglobina é tamén O-glicosilada preto da súa caixa de destrución N-teminal.

Importancia clínica

[editar | editar a fonte]

A mutación no xene JUP que codifica a placoglobina foi sinalada como unha das causas da cardiomiopatía chamada displasia ventricular dereita arritmoxénica (DVDAR ou ARVD) ou cardiomiopatía ventricular dereita arritmoxénica (CVDAR ou ARVC); as mutacións no JUP causan especificamente unha forma autosómica recesiva chamada enfermidade de Naxos.[18][19][20] Esta forma foi identificada primeiro nun pequeno grupo de familias da illa grega de Naxos. O fenotipo da enfermidade de Naxos, variante da displasia ventricular dereita arritmoxénica é peculiar porque afecta ao pelo e á pel ademais de ao ventrículo dereito. Os individuos afectados teñen uns cabelos de tipo afro rizados; prodúcese tamén un eritema plantar ao nacer que progresa a unha queratose, xa que as palmas das mans e plantas dos pés se utilizan para gabear e camiñar.[21][22][23] Estes descubrimentos co-segregan ao 100% co desenvolvemento da displasia ventricular dereita arritmoxénica no iniico da adolescencia.

Fíxose evidente que a DVDAR/CVDAR é unha doenza dos desmosomas do músculo cardíaco e os avances en xenética molecular reforzaron esta idea.[24][25][26][27][28][29][30][31][32]

Os estudos que investigaron o papel da placoglobina na patoloxía de enfermidades atoparon que a supresión da expresión da desmoplaquina polo ARN interferente pequeno dá lugar a unha localización da placoglobina no núcleo celular, o que ten como resultado unha redución na vía de sinalización Wnt por medio de Tcf/Lef1 e vai seguida da patoxénese da cardiopatía ventricular dereita arritmoxénica.[33] Especificalmente, foi inducida a expresión do factor adipoxénico e as células proxenitoras cardíacas no epicardio foron diferenciados en adipocitos.[34]

Un exame cardíaco non invasivo identificou unha inversión de ondas T no electrocardiograma, anormalidades no movemento da parede do ventrículo dereito, e frecuentes extrasístoles ventriculares como marcadores sensibles e específicos para unha mutación JUP.[35] Estudos adicionais atoparon que a análise histoquímica das proteínas desmosómicas do músculo cardíaco son tamén un test sensible e específico da DVDAR/CVDAR.[36]

A distribución anormal da placoglobina debida a mutacións nos xenes que codifican a desmogleína 1 e 3 foi tamén implicada no pénfigo vulgar.[37][38]

Interaccións

[editar | editar a fonte]

A placoglobina presenta interaccións con:

  1. 1,0 1,1 "Entrez Gene: JUP junction plakoglobin". 
  2. "Protein sequence of human JUP (Uniprot ID: P14923)". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Arquivado dende o orixinal o 24 de setembro de 2015. Consultado o 3 July 2015. 
  3. Whittock NV, Eady RA, McGrath JA (Oct 2000). "Genomic organization and amplification of the human plakoglobin gene (JUP)". Experimental Dermatology 9 (5): 323–6. PMID 11016852. 
  4. Stokes DL (Oct 2007). "Desmosomes from a structural perspective". Current Opinion in Cell Biology 19 (5): 565–71. PMID 17945476. doi:10.1016/j.ceb.2007.09.003. 
  5. Cowin P, Kapprell HP, Franke WW, Tamkun J, Hynes RO (Sep 1986). "Plakoglobin: a protein common to different kinds of intercellular adhering junctions". Cell 46 (7): 1063–73. PMID 3530498. 
  6. Witcher LL, Collins R, Puttagunta S, Mechanic SE, Munson M, Gumbiner B, Cowin P (May 1996). "Desmosomal cadherin binding domains of plakoglobin". The Journal of Biological Chemistry 271 (18): 10904–9. PMID 8631907. 
  7. Troyanovsky RB, Chitaev NA, Troyanovsky SM (Dec 1996). "Cadherin binding sites of plakoglobin: localization, specificity and role in targeting to adhering junctions". Journal of Cell Science. 109 ( Pt 13): 3069–78. PMID 9004041. 
  8. Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Thalhammer C, Vogel F, Birchmeier C, Günthert U, Franke WW, Birchmeier W (Oct 1996). "Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart". The Journal of Cell Biology 135 (1): 215–25. PMID 8858175. 
  9. Bierkamp C, Mclaughlin KJ, Schwarz H, Huber O, Kemler R (Dec 1996). "Embryonic heart and skin defects in mice lacking plakoglobin". Developmental Biology 180 (2): 780–5. PMID 8954745. doi:10.1006/dbio.1996.0346. 
  10. Isac CM, Ruiz P, Pfitzmaier B, Haase H, Birchmeier W, Morano I (Jan 1999). "Plakoglobin is essential for myocardial compliance but dispensable for myofibril insertion into adherens junctions". Journal of Cellular Biochemistry 72 (1): 8–15. PMID 10025662. 
  11. Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL (Mar 2011). "Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling". Molecular and Cellular Biology 31 (6): 1134–44. PMID 21245375. doi:10.1128/MCB.01025-10. 
  12. Li D, Liu Y, Maruyama M, Zhu W, Chen H, Zhang W, Reuter S, Lin SF, Haneline LS, Field LJ, Chen PS, Shou W (Dec 2011). "Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy". Human Molecular Genetics 20 (23): 4582–96. PMID 21880664. doi:10.1093/hmg/ddr392. 
  13. Swope D, Cheng L, Gao E, Li J, Radice GL (Mar 2012). "Loss of cadherin-binding proteins β-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis". Molecular and Cellular Biology 32 (6): 1056–67. PMID 22252313. doi:10.1128/MCB.06188-11. 
  14. Kodama S, Ikeda S, Asahara T, Kishida M, Kikuchi A (Sep 1999). "Axin directly interacts with plakoglobin and regulates its stability". The Journal of Biological Chemistry 274 (39): 27682–8. PMID 10488109. 
  15. Rubinfeld B, Souza B, Albert I, Munemitsu S, Polakis P (Mar 1995). "The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin". The Journal of Biological Chemistry 270 (10): 5549–55. PMID 7890674. 
  16. Kikuchi A (Feb 2000). "Regulation of beta-catenin signaling in the Wnt pathway". Biochemical and Biophysical Research Communications 268 (2): 243–8. PMID 10679188. doi:10.1006/bbrc.1999.1860. 
  17. Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze'ev A (Apr 2000). "Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system". Oncogene 19 (16): 1992–2001. PMID 10803460. doi:10.1038/sj.onc.1203519. 
  18. Zhang Z, Stroud MJ, Zhang J, Fang X, Ouyang K, Kimura K, Mu Y, Dalton ND, Gu Y, Bradford WH, Peterson KL, Cheng H, Zhou X, Chen J (Apr 2015). "Normalization of Naxos plakoglobin levels restores cardiac function in mice". The Journal of Clinical Investigation 125 (4): 1708–12. PMID 25705887. doi:10.1172/JCI80335. 
  19. Li D, Zhang W, Liu Y, Haneline LS, Shou W (Mar 2012). "Lack of plakoglobin in epidermis leads to keratoderma". The Journal of Biological Chemistry 287 (13): 10435–43. PMID 22315228. doi:10.1074/jbc.M111.299669. 
  20. Rampazzo A (2006). "Genetic bases of arrhythmogenic right ventricular Cardiomyopathy". Heart International 2 (1): 17. PMID 21977247. doi:10.4081/hi.2006.17. 
  21. Erken H, Yariz KO, Duman D, Kaya CT, Sayin T, Heper AO, Tekin M (Oct 2011). "Cardiomyopathy with alopecia and palmoplantar keratoderma (CAPK) is caused by a JUP mutation". The British Journal of Dermatology 165 (4): 917–21. PMID 21668431. doi:10.1111/j.1365-2133.2011.10455.x. 
  22. Pigors M, Kiritsi D, Krümpelmann S, Wagner N, He Y, Podda M, Kohlhase J, Hausser I, Bruckner-Tuderman L, Has C (May 2011). "Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity". Human Molecular Genetics 20 (9): 1811–9. PMID 21320868. doi:10.1093/hmg/ddr064. 
  23. Cabral RM, Liu L, Hogan C, Dopping-Hepenstal PJ, Winik BC, Asial RA, Dobson R, Mein CA, Baselaga PA, Mellerio JE, Nanda A, Boente Mdel C, Kelsell DP, McGrath JA, South AP (Jun 2010). "Homozygous mutations in the 5' region of the JUP gene result in cutaneous disease but normal heart development in children". The Journal of Investigative Dermatology 130 (6): 1543–50. PMID 20130592. doi:10.1038/jid.2010.7. 
  24. Marian AJ (NaN). "On the diagnostic utility of junction plakoglobin in arrhythmogenic right ventricular cardiomyopathy". Cardiovascular Pathology 22 (5): 309–11. PMID 23806441. doi:10.1016/j.carpath.2013.05.002. 
  25. Lazzarini E, Jongbloed JD, Pilichou K, Thiene G, Basso C, Bikker H, Charbon B, Swertz M, van Tintelen JP, van der Zwaag PA (Apr 2015). "The ARVD/C genetic variants database: 2014 update". Human Mutation 36 (4): 403–10. PMID 25676813. doi:10.1002/humu.22765. 
  26. Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P, Klug D, Dubourg O, Delacretaz E, Cosnay P, Scanu P, Extramiana F, Keller D, Hidden-Lucet F, Simon F, Bessirard V, Roux-Buisson N, Hebert JL, Azarine A, Casset-Senon D, Rouzet F, Lecarpentier Y, Fontaine G, Coirault C, Frank R, Hainque B, Charron P (Jun 2010). "Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice". Europace 12 (6): 861–8. PMID 20400443. doi:10.1093/europace/euq104. 
  27. "Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy". 1993. PMID 20301310. 
  28. Bauce B, Nava A, Beffagna G, Basso C, Lorenzon A, Smaniotto G, De Bortoli M, Rigato I, Mazzotti E, Steriotis A, Marra MP, Towbin JA, Thiene G, Danieli GA, Rampazzo A (Jan 2010). "Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia". Heart Rhythm 7 (1): 22–9. PMID 20129281. doi:10.1016/j.hrthm.2009.09.070. 
  29. den Haan AD, Tan BY, Zikusoka MN, Lladó LI, Jain R, Daly A, Tichnell C, James C, Amat-Alarcon N, Abraham T, Russell SD, Bluemke DA, Calkins H, Dalal D, Judge DP (Oct 2009). "Comprehensive desmosome mutation analysis in north americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy". Circulation. Cardiovascular Genetics 2 (5): 428–35. PMID 20031617. doi:10.1161/CIRCGENETICS.109.858217. 
  30. Awad MM, Calkins H, Judge DP (May 2008). "Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy". Nature Clinical Practice. Cardiovascular Medicine 5 (5): 258–67. PMID 18382419. doi:10.1038/ncpcardio1182. 
  31. van Tintelen JP, Hofstra RM, Wiesfeld AC, van den Berg MP, Hauer RN, Jongbloed JD (May 2007). "Molecular genetics of arrhythmogenic right ventricular cardiomyopathy: emerging horizon?". Current Opinion in Cardiology 22 (3): 185–92. PMID 17413274. doi:10.1097/HCO.0b013e3280d942c4. 
  32. Sen-Chowdhry S, Syrris P, McKenna WJ (Nov 2007). "Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy". Journal of the American College of Cardiology 50 (19): 1813–21. PMID 17980246. doi:10.1016/j.jacc.2007.08.008. 
  33. Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ (Jul 2006). "Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy". The Journal of Clinical Investigation 116 (7): 2012–21. PMC 1483165. PMID 16823493. doi:10.1172/JCI27751. 
  34. Lombardi R, Marian AJ (May 2010). "Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells". Current Opinion in Cardiology 25 (3): 222–8. PMID 20124997. doi:10.1097/HCO.0b013e3283376daf. 
  35. Antoniades L, Tsatsopoulou A, Anastasakis A, Syrris P, Asimaki A, Panagiotakos D, Zambartas C, Stefanadis C, McKenna WJ, Protonotarios N (Sep 2006). "Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype-phenotype relations, diagnostic features and prognosis". European Heart Journal 27 (18): 2208–16. PMID 16893920. doi:10.1093/eurheartj/ehl184. 
  36. van Tintelen JP, Hauer RN (Jul 2009). "Cardiomyopathies: New test for arrhythmogenic right ventricular cardiomyopathy". Nature Reviews. Cardiology 6 (7): 450–1. PMID 19554004. doi:10.1038/nrcardio.2009.97. 
  37. Lo Muzio L, Pannone G, Staibano S, Mignogna MD, Rubini C, Ruocco E, De Rosa G, Sciubba JJ (Oct 2001). "A possible role of catenin dyslocalization in pemphigus vulgaris pathogenesis". Journal of Cutaneous Pathology 28 (9): 460–9. PMID 11553312. 
  38. Mignogna MD, Pannone G, Lo Muzio L, Staibano S, Bucci E (May 2001). "Catenin dislocation in oral pemphigus vulgaris". Journal of Oral Pathology & Medicine 30 (5): 268–74. PMID 11334462. 
  39. 39,0 39,1 Shibata T, Gotoh M, Ochiai A, Hirohashi S (Aug 1994). "Association of plakoglobin with APC, a tumor suppressor gene product, and its regulation by tyrosine phosphorylation". Biochemical and Biophysical Research Communications 203 (1): 519–22. PMID 8074697. doi:10.1006/bbrc.1994.2213. 
  40. Daniel JM, Reynolds AB (Sep 1995). "The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin". Molecular and Cellular Biology 15 (9): 4819–24. PMC 230726. PMID 7651399. 
  41. 41,0 41,1 Sacco PA, McGranahan TM, Wheelock MJ, Johnson KR (Aug 1995). "Identification of plakoglobin domains required for association with N-cadherin and alpha-catenin". The Journal of Biological Chemistry 270 (34): 20201–6. PMID 7650039. doi:10.1074/jbc.270.34.20201. 
  42. Roe S, Koslov ER, Rimm DL (Jun 1998). "A mutation in alpha-catenin disrupts adhesion in clone A cells without perturbing its actin and beta-catenin binding activity". Cell Adhesion and Communication 5 (4): 283–96. PMID 9762469. doi:10.3109/15419069809040298. 
  43. Obama H, Ozawa M (Apr 1997). "Identification of the domain of alpha-catenin involved in its association with beta-catenin and plakoglobin (gamma-catenin)". The Journal of Biological Chemistry 272 (17): 11017–20. PMID 9110993. doi:10.1074/jbc.272.17.11017. 
  44. 44,0 44,1 Hazan RB, Norton L (Apr 1998). "The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton". The Journal of Biological Chemistry 273 (15): 9078–84. PMID 9535896. doi:10.1074/jbc.273.15.9078. 
  45. Kucerová D, Sloncová E, Tuhácková Z, Vojtechová M, Sovová V (Dec 2001). "Expression and interaction of different catenins in colorectal carcinoma cells". International Journal of Molecular Medicine 8 (6): 695–8. PMID 11712088. doi:10.3892/ijmm.8.6.695. 
  46. Kinch MS, Clark GJ, Der CJ, Burridge K (Jul 1995). "Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia". The Journal of Cell Biology 130 (2): 461–71. PMC 2199929. PMID 7542250. doi:10.1083/jcb.130.2.461. 
  47. Hinck L, Näthke IS, Papkoff J, Nelson WJ (Jun 1994). "Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly". The Journal of Cell Biology 125 (6): 1327–40. PMC 2290923. PMID 8207061. doi:10.1083/jcb.125.6.1327. 
  48. Knudsen KA, Wheelock MJ (Aug 1992). "Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin". The Journal of Cell Biology 118 (3): 671–9. PMC 2289540. PMID 1639850. doi:10.1083/jcb.118.3.671. 
  49. Straub BK, Boda J, Kuhn C, Schnoelzer M, Korf U, Kempf T, Spring H, Hatzfeld M, Franke WW (Dec 2003). "A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells". Journal of Cell Science 116 (Pt 24): 4985–95. PMID 14625392. doi:10.1242/jcs.00815. 
  50. Klingelhöfer J, Troyanovsky RB, Laur OY, Troyanovsky S (Aug 2000). "Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions". Journal of Cell Science. 113 ( Pt 16) (16): 2829–36. PMID 10910767. 
  51. Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noël A, Foidart JM (Dec 1997). "Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro". Experimental Cell Research 237 (2): 347–56. PMID 9434630. doi:10.1006/excr.1997.3799. 
  52. Shasby DM, Ries DR, Shasby SS, Winter MC (Jun 2002). "Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin". American Journal of Physiology. Lung Cellular and Molecular Physiology 282 (6): L1330–8. PMID 12003790. doi:10.1152/ajplung.00329.2001. 
  53. Bannon LJ, Cabrera BL, Stack MS, Green KJ (Nov 2001). "Isoform-specific differences in the size of desmosomal cadherin/catenin complexes". The Journal of Investigative Dermatology 117 (5): 1302–6. PMID 11710948. doi:10.1046/j.1523-1747.2001.01512.x. 
  54. Nieset JE, Sacco-Bubulya PA, Sadler TM, Johnson KR, Wheelock MJ (May 2000). "The amino- and carboxyl-terminal tails of (beta)-catenin reduce its affinity for desmoglein 2". Journal of Cell Science. 113 ( Pt 10) (10): 1737–45. PMID 10769205. 
  55. Ozawa M, Terada H, Pedraza C (Nov 1995). "The fourth armadillo repeat of plakoglobin (gamma-catenin) is required for its high affinity binding to the cytoplasmic domains of E-cadherin and desmosomal cadherin Dsg2, and the tumor suppressor APC protein". Journal of Biochemistry 118 (5): 1077–82. PMID 8749329. doi:10.1093/jb/118.5.1077. 
  56. Kowalczyk AP, Navarro P, Dejana E, Bornslaeger EA, Green KJ, Kopp DS, Borgwardt JE (Oct 1998). "VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions". Journal of Cell Science. 111 ( Pt 20) (20): 3045–57. PMID 9739078. 
  57. Kowalczyk AP, Bornslaeger EA, Borgwardt JE, Palka HL, Dhaliwal AS, Corcoran CM, Denning MF, Green KJ (Nov 1997). "The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes". The Journal of Cell Biology 139 (3): 773–84. PMC 2141713. PMID 9348293. doi:10.1083/jcb.139.3.773. 
  58. Li Y, Yu WH, Ren J, Chen W, Huang L, Kharbanda S, Loda M, Kufe D (Aug 2003). "Heregulin targets gamma-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein". Molecular Cancer Research 1 (10): 765–75. PMID 12939402. 
  59. Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ (Mar 2002). "Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta -catenin signaling". The Journal of Biological Chemistry 277 (12): 10512–22. PMID 11790773. doi:10.1074/jbc.M108765200. 
  60. Fuchs M, Müller T, Lerch MM, Ullrich A (Jul 1996). "Association of human protein-tyrosine phosphatase kappa with members of the armadillo family". The Journal of Biological Chemistry 271 (28): 16712–9. PMID 8663237. doi:10.1074/jbc.271.28.16712. 
  61. Besco JA, Hooft van Huijsduijnen R, Frostholm A, Rotter A (Oct 2006). "Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT)". Brain Research 1116 (1): 50–7. PMID 16973135. doi:10.1016/j.brainres.2006.07.122. 
  62. Pashmforoush M, Pomiès P, Peterson KL, Kubalak S, Ross J, Hefti A, Aebi U, Beckerle MC, Chien KR (May 2001). "Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy". Nature Medicine 7 (5): 591–7. PMID 11329061. doi:10.1038/87920. 

Véxase tamén

[editar | editar a fonte]

Outros artigos

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]

Ligazóns externas

[editar | editar a fonte]