-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
444 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
from dataclasses import dataclass | ||
import torch | ||
|
||
|
||
@dataclass | ||
class o3f_config: | ||
# Experiment | ||
device: str = "cuda" if torch.cuda.is_available() else "cpu" | ||
dataset_name: str = "halfcheetah-medium-v2" | ||
seed: int = 42 | ||
max_timesteps: int = int(1e6) | ||
|
||
max_action : float = 1.0 | ||
|
||
action_dim: int = 6 | ||
state_dim: int = 17 | ||
|
||
buffer_size: int = 1_000_000 | ||
actor_lr: float = 3e-4 | ||
critic_lr: float = 3e-4 | ||
alpha_lr: float = 3e-4 | ||
|
||
hidden_dim: int = 256 | ||
batch_size: int = 256 | ||
discount: float = 0.99 | ||
tau: float = 0.005 | ||
|
||
critic_ln: bool = True | ||
num_critics: int = 5 | ||
normalize: bool = True | ||
standard_deviation: float = 0.2 | ||
num_action_candidates: int = 100 | ||
|
||
project: str = "offline_O3F" | ||
group: str = dataset_name | ||
name: str = dataset_name + "_" + str(seed) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import torch | ||
import numpy as np | ||
from typing import List, Tuple | ||
import os | ||
|
||
|
||
class ReplayBuffer: | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
buffer_size: int = 1000000) -> None: | ||
|
||
self.state_dim = state_dim | ||
self.action_dim = action_dim | ||
self.buffer_size = buffer_size | ||
self.pointer = 0 | ||
self.size = 0 | ||
|
||
device = "cpu" | ||
self.device = device | ||
|
||
self.states = torch.zeros((buffer_size, state_dim), dtype=torch.float32, device=device) | ||
self.actions = torch.zeros((buffer_size, action_dim), dtype=torch.float32, device=device) | ||
self.rewards = torch.zeros((buffer_size, 1), dtype=torch.float32, device=device) | ||
self.next_states = torch.zeros((buffer_size, state_dim), dtype=torch.float32, device=device) | ||
self.dones = torch.zeros((buffer_size, 1), dtype=torch.float32, device=device) | ||
|
||
# i/o order: state, action, reward, next_state, done | ||
|
||
def from_json(self, json_file: str): | ||
import json | ||
|
||
if not json_file.endswith('.json'): | ||
json_file = json_file + '.json' | ||
|
||
json_file = os.path.join("json_datasets", json_file) | ||
output = dict() | ||
|
||
with open(json_file) as f: | ||
dataset = json.load(f) | ||
|
||
for k, v in dataset.items(): | ||
v = np.array(v) | ||
if k != "terminals": | ||
v = v.astype(np.float32) | ||
|
||
output[k] = v | ||
|
||
self.from_d4rl(output) | ||
|
||
def get_moments(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: | ||
state_mean, state_std = self.states.mean(dim=0), self.states.std(dim=0) | ||
action_mean, action_std = self.actions.mean(dim=0), self.actions.std(dim=0) | ||
|
||
return (state_mean, state_std), (action_mean, action_std) | ||
|
||
@staticmethod | ||
def to_tensor(data: np.ndarray, device=None) -> torch.Tensor: | ||
if device is None: | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
return torch.tensor(data, dtype=torch.float32, device=device) | ||
|
||
def sample(self, batch_size: int): | ||
indexes = np.random.randint(0, self.size, size=batch_size) | ||
|
||
return ( | ||
self.states[indexes], | ||
self.actions[indexes], | ||
self.rewards[indexes], | ||
self.next_states[indexes], | ||
self.dones[indexes] | ||
) | ||
|
||
def from_d4rl(self, dataset): | ||
if self.size: | ||
print("Warning: loading data into non-empty buffer") | ||
n_transitions = dataset["observations"].shape[0] | ||
|
||
if n_transitions < self.buffer_size: | ||
self.states[:n_transitions] = self.to_tensor(dataset["observations"][-n_transitions:], self.device) | ||
self.actions[:n_transitions] = self.to_tensor(dataset["actions"][-n_transitions:], self.device) | ||
self.next_states[:n_transitions] = self.to_tensor(dataset["next_observations"][-n_transitions:], self.device) | ||
self.rewards[:n_transitions] = self.to_tensor(dataset["rewards"][-n_transitions:].reshape(-1, 1), self.device) | ||
self.dones[:n_transitions] = self.to_tensor(dataset["terminals"][-n_transitions:].reshape(-1, 1), self.device) | ||
|
||
else: | ||
self.buffer_size = n_transitions | ||
|
||
self.states = self.to_tensor(dataset["observations"][-n_transitions:], self.device) | ||
self.actions = self.to_tensor(dataset["actions"][-n_transitions:]) | ||
self.next_states = self.to_tensor(dataset["next_observations"][-n_transitions:], self.device) | ||
self.rewards = self.to_tensor(dataset["rewards"][-n_transitions:].reshape(-1, 1), self.device) | ||
self.dones = self.to_tensor(dataset["terminals"][-n_transitions:].reshape(-1, 1), self.device) | ||
|
||
self.size = n_transitions | ||
self.pointer = n_transitions % self.buffer_size | ||
|
||
def from_d4rl_finetune(self, dataset): | ||
raise NotImplementedError() | ||
|
||
def normalize_states(self, eps=1e-3): | ||
mean = self.states.mean(0, keepdim=True) | ||
std = self.states.std(0, keepdim=True) + eps | ||
self.states = (self.states - mean) / std | ||
self.next_states = (self.next_states - mean) / std | ||
return mean, std | ||
|
||
def clip(self, eps=1e-5): | ||
self.actions = torch.clip(self.actions, - 1 + eps, 1 - eps) | ||
|
||
def add_transition(self, | ||
state: torch.Tensor, | ||
action: torch.Tensor, | ||
reward: torch.Tensor, | ||
next_state: torch.Tensor, | ||
done: torch.Tensor): | ||
if not isinstance(state, torch.Tensor): | ||
state = self.to_tensor(state, self.device) | ||
action = self.to_tensor(action, self.device) | ||
reward = self.to_tensor(reward, self.device) | ||
next_state = self.to_tensor(next_state, self.device) | ||
done = self.to_tensor(done, self.device) | ||
|
||
|
||
self.states[self.pointer] = state | ||
self.actions[self.pointer] = action | ||
self.rewards[self.pointer] = reward | ||
self.next_states[self.pointer] = next_state | ||
self.dones[self.pointer] = done | ||
|
||
self.pointer = (self.pointer + 1) % self.buffer_size | ||
self.size = min(self.size + 1, self.buffer_size) | ||
|
||
def add_batch(self, | ||
states: List[torch.Tensor], | ||
actions: List[torch.Tensor], | ||
rewards: List[torch.Tensor], | ||
next_states: List[torch.Tensor], | ||
dones: List[torch.Tensor]): | ||
for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones): | ||
self.add_transition(state, action, reward, next_state, done) | ||
|
||
@staticmethod | ||
def dataset_stats(dataset): | ||
episode_returns = [] | ||
returns = 0 | ||
episode_length = 0 | ||
|
||
for reward, done in zip(dataset["rewards"], dataset["terminals"]): | ||
if done: | ||
episode_returns.append(returns) | ||
returns = 0 | ||
episode_length = 0 | ||
else: | ||
episode_length += 1 | ||
returns += reward | ||
if episode_length == 1000: | ||
episode_returns.append(returns) | ||
returns = 0 | ||
episode_length = 0 | ||
|
||
episode_returns = np.array(episode_returns) | ||
return episode_returns.mean(), episode_returns.std() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
from math import sqrt | ||
from typing import Optional, Tuple | ||
import torch | ||
from torch import nn | ||
from torch.distributions import Normal | ||
import numpy as np | ||
|
||
|
||
class Actor(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
hidden_dim: int = 256, | ||
edac_init: bool = False, | ||
max_action: float = 1.0) -> None: | ||
super().__init__() | ||
self.action_dim = action_dim | ||
self.max_action = max_action | ||
|
||
self.trunk = nn.Sequential( | ||
nn.Linear(state_dim, hidden_dim), | ||
nn.ReLU(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.ReLU(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.ReLU() | ||
) | ||
|
||
self.mu = nn.Linear(hidden_dim, action_dim) | ||
self.log_std = nn.Linear(hidden_dim, action_dim) | ||
|
||
if edac_init: | ||
# init as in the EDAC paper | ||
for layer in self.trunk[::2]: | ||
nn.init.constant_(layer.bias, 0.1) | ||
|
||
nn.init.uniform_(self.mu.weight, -1e-3, 1e-3) | ||
nn.init.uniform_(self.mu.bias, -1e-3, 1e-3) | ||
nn.init.uniform_(self.log_std.weight, -1e-3, 1e-3) | ||
nn.init.uniform_(self.log_std.bias, -1e-3, 1e-3) | ||
|
||
def forward(self, | ||
state: torch.Tensor, | ||
deterministic: bool = False, | ||
need_log_prob: bool = False) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | ||
hidden = self.trunk(state) | ||
mu, log_std = self.mu(hidden), self.log_std(hidden) | ||
|
||
log_std = torch.clip(log_std, -20, 2) # log_std = torch.clip(log_std, -5, 2) EDAC clipping | ||
policy_distribution = Normal(mu, torch.exp(log_std)) | ||
|
||
if deterministic: | ||
action = mu | ||
else: | ||
action = policy_distribution.rsample() | ||
|
||
tanh_action, log_prob = torch.tanh(action), None | ||
if need_log_prob: | ||
log_prob = policy_distribution.log_prob(action).sum(-1) | ||
log_prob = log_prob - torch.log(1 - tanh_action.pow(2) + 1e-6).sum(-1) | ||
# shape [batch_size,] | ||
|
||
return tanh_action * self.max_action, log_prob | ||
|
||
@torch.no_grad() | ||
def act(self, state: np.ndarray, device: str) -> np.ndarray: | ||
deterministic = not self.training | ||
state = torch.tensor(state, device=device, dtype=torch.float32) | ||
action = self(state, deterministic=deterministic)[0].cpu().numpy() | ||
return action | ||
|
||
|
||
class Critic(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
hidden_dim: int = 256, | ||
layer_norm: bool = True, | ||
edac_init: bool = True) -> None: | ||
super().__init__() | ||
|
||
#block = nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity() | ||
|
||
self.critic = nn.Sequential( | ||
nn.Linear(state_dim + action_dim, hidden_dim), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
nn.Linear(hidden_dim, 1) | ||
) | ||
|
||
if edac_init: | ||
# init as in the EDAC paper | ||
for layer in self.critic[::3]: | ||
nn.init.constant_(layer.bias, 0.1) | ||
|
||
nn.init.uniform_(self.critic[-1].weight, -3e-3, 3e-3) | ||
nn.init.uniform_(self.critic[-1].bias, -3e-3, 3e-3) | ||
|
||
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor: | ||
concat = torch.cat([state, action], dim=-1) | ||
q_values = self.critic(concat).squeeze(-1) # shape: [batch_size,] | ||
return q_values | ||
|
||
|
||
class EnsembledLinear(nn.Module): | ||
def __init__(self, | ||
in_features: int, | ||
out_features: int, | ||
ensemble_size: int) -> None: | ||
super().__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.ensemble_size = ensemble_size | ||
|
||
self.weight = nn.Parameter(torch.empty(ensemble_size, in_features, out_features)) | ||
self.bias = nn.Parameter(torch.empty(ensemble_size, 1, out_features)) | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
for layer in range(self.ensemble_size): | ||
nn.init.kaiming_uniform_(self.weight[layer], a=sqrt(5)) | ||
|
||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0]) | ||
bound = 0 | ||
if fan_in > 0: | ||
bound = 1 / sqrt(fan_in) | ||
|
||
nn.init.uniform_(self.bias, -bound, bound) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
out = x @ self.weight + self.bias | ||
return out | ||
|
||
|
||
class EnsembledCritic(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
hidden_dim: int = 256, | ||
num_critics: int = 2, | ||
layer_norm: bool = True, | ||
edac_init: bool = True) -> None: | ||
super().__init__() | ||
|
||
#block = nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity() | ||
self.num_critics = num_critics | ||
|
||
self.critic = nn.Sequential( | ||
EnsembledLinear(state_dim + action_dim, hidden_dim, num_critics), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
EnsembledLinear(hidden_dim, hidden_dim, num_critics), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
EnsembledLinear(hidden_dim, hidden_dim, num_critics), | ||
nn.LayerNorm(hidden_dim) if layer_norm else nn.Identity(), | ||
nn.ReLU(), | ||
EnsembledLinear(hidden_dim, 1, num_critics) | ||
) | ||
|
||
if edac_init: | ||
# init as in the EDAC paper | ||
for layer in self.critic[::3]: | ||
nn.init.constant_(layer.bias, 0.1) | ||
|
||
nn.init.uniform_(self.critic[-1].weight, -3e-3, 3e-3) | ||
nn.init.uniform_(self.critic[-1].bias, -3e-3, 3e-3) | ||
|
||
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor: | ||
concat = torch.cat([state, action], dim=-1) | ||
concat = concat.unsqueeze(0) | ||
concat = concat.repeat_interleave(self.num_critics, dim=0) | ||
q_values = self.critic(concat).squeeze(-1) | ||
return q_values | ||
|
||
|
||
if __name__ == "__main__": | ||
critic = EnsembledCritic(17, 6) | ||
|
||
state_repeat = torch.rand(32, 17) | ||
action_repeat = torch.rand(32, 6) | ||
|
||
meow = critic(state_repeat, action_repeat).min(0).values.view(32, -1) | ||
|
||
print(meow.max(1).values.shape) | ||
|
||
|
Oops, something went wrong.