-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
72 lines (51 loc) · 2.73 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from fisher_brc import FisherBRC
from config import fbrc_config
from modules import Actor, EnsembledCritic, MixtureGaussianActor
from dataset import ReplayBuffer
import wandb
from tqdm import tqdm
class FBRCTrainer:
def __init__(self,
cfg=fbrc_config) -> None:
self.cfg = cfg
self.device = cfg.device
self.batch_size = cfg.batch_size
actor = Actor(cfg.state_dim,
cfg.action_dim,
cfg.hidden_dim)
behavior = MixtureGaussianActor(cfg.state_dim,
cfg.action_dim,
cfg.hidden_dim,
cfg.num_bc_actors)
critic = EnsembledCritic(cfg.state_dim,
cfg.action_dim,
cfg.hidden_dim)
self.fbrc = FisherBRC(cfg,
actor,
behavior,
critic)
self.buffer = ReplayBuffer(cfg.state_dim, cfg.action_dim, cfg.buffer_size)
self.buffer.from_json(cfg.dataset_name)
def fit(self):
print(f"Training starts on {self.cfg.device} 🚀")
with wandb.init(project=self.cfg.project, entity="zzmtsvv", group=f"behavior_{self.cfg.group}", name=self.cfg.name):
wandb.config.update({k: v for k, v in self.cfg.__dict__.items() if not k.startswith("__")})
for t in tqdm(range(self.cfg.behavior_pretrain_steps), desc="Behavior Pretrain"):
batch = self.buffer.sample(self.batch_size)
states, actions = [b.to(self.device) for b in batch[:2]]
logging_dict = self.fbrc.behavior_pretrain(states, actions)
wandb.log(logging_dict, step=self.fbrc.bc_pretrain_steps)
wandb.finish()
with wandb.init(project=self.cfg.project, entity="zzmtsvv", group=f"frbc_{self.cfg.group}", name=self.cfg.name):
wandb.config.update({k: v for k, v in self.cfg.__dict__.items() if not k.startswith("__")})
for t in tqdm(range(self.cfg.max_timesteps), desc="FBRC steps"):
batch = self.buffer.sample(self.batch_size)
states, actions, rewards, next_states, dones = [x.to(self.device) for x in batch]
logging_dict = self.fbrc.train(states,
actions,
rewards,
next_states,
dones)
wandb.log(logging_dict, step=self.fbrc.total_iterations)
wandb.finish()