-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem.v
399 lines (362 loc) · 10 KB
/
mem.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
`include "defines.v"
module memory
(
input reset,
input clock,
input [31:0] mem_addr,
input [`MEMORY_ACCESS_SIZE:0] mem_size,
input mem_enable,
input mem_w_mode,
input [31:0] mem_w_data,
output reg [31:0] mem_r_data,
output reg mem_done,
output reg mem_error
);
reg[7:0] data[`MEMORY_SIZE-1:0]; // 8 KB
integer i;
wire[3:0] mask;
assign mask[0] = 1;
assign mask[1] = mem_size == 2 || mem_size == 4;
assign mask[2] = mem_size == 4;
assign mask[3] = mem_size == 4;
always @(posedge clock) begin
if (reset) begin
mem_done <= 0;
mem_error <= 0;
end else begin
if (mem_enable) begin
if (mem_w_mode) begin
if (mask[0])
data[mem_addr ] <= mem_w_data[7:0];
if (mask[1])
data[mem_addr + 1] <= mem_w_data[15:8];
if (mask[2])
data[mem_addr + 2] <= mem_w_data[23:16];
if (mask[3])
data[mem_addr + 3] <= mem_w_data[31:24];
end else begin
mem_r_data <= {
mask[3] ? data[mem_addr+3] : 8'b0,
mask[2] ? data[mem_addr+2] : 8'b0,
mask[1] ? data[mem_addr+1] : 8'b0,
mask[0] ? data[mem_addr] : 8'b0
};
end
mem_done <= 1;
end else begin
mem_done <= 0;
end
end
end
endmodule
module shutdown
(
input reset,
input clock,
input [31:0] mem_addr,
input [`MEMORY_ACCESS_SIZE:0] mem_size,
input mem_enable,
input mem_w_mode,
input [31:0] mem_w_data,
output reg [31:0] mem_r_data,
output reg mem_done,
output reg mem_error,
output reg hlt,
output reg hlt_error
);
always @(posedge clock) begin
if (reset) begin
mem_done <= 0;
mem_error <= 0;
hlt <= 0;
hlt_error <= 0;
end else begin
if (mem_enable) begin
if (mem_w_mode && (mem_addr == 0) && (mem_size == 4) && (mem_w_data == 93)) begin
mem_error <= 0;
hlt <= 1;
end else if (mem_w_mode && (mem_addr == 4) && (mem_size == 4) && (mem_w_data == 93)) begin
mem_error <= 0;
hlt_error <= 1;
end else begin
mem_error <= 1;
end
mem_done <= 1;
end
end
end
endmodule
module uart
(
input reset,
input clock,
input [31:0] mem_addr,
input [`MEMORY_ACCESS_SIZE:0] mem_size,
input mem_enable,
input mem_w_mode,
input [31:0] mem_w_data,
output reg [31:0] mem_r_data,
output reg mem_done,
output reg mem_error,
input [8:0] data_in,
output reg [8:0] data_out
);
always @(posedge clock) begin
if (reset) begin
mem_done <= 0;
mem_error <= 0;
data_out <= 0;
end else begin
data_out[8] <= 0;
if (mem_enable) begin
mem_done <= 1;
if (mem_w_mode) begin
if (mem_addr == 0) begin
data_out[8] <= 1;
data_out[7:0] <= mem_w_data[7:0];
end
end else begin
case (mem_addr)
0: mem_r_data <= 0;
4: begin
if (data_in[8])
mem_r_data <= data_in[7:0];
else
mem_r_data[31] <= 1; // RX empty
end
endcase
end
end else begin
mem_done <= 0;
end
end
end
endmodule
module clint #(
parameter SCALER = 32'd0000_0256
)
(
input reset,
input clock,
input [31:0] mem_addr,
input [`MEMORY_ACCESS_SIZE:0] mem_size,
input mem_enable,
input mem_w_mode,
input [31:0] mem_w_data,
output reg [31:0] mem_r_data,
output reg mem_done,
output reg mem_error,
output reg [63:0] mtime,
output tip,
output reg sip
);
reg [63:0] mtimecmp;
reg [31:0] cnt;
assign tip = (mtimecmp != 0) && (mtime >= mtimecmp);
always @(posedge clock) begin
if (reset) begin
mem_done <= 0;
mem_error <= 0;
mtime <= 0;
mtimecmp <= 0;
sip <= 0;
cnt <= 0;
end else begin
if (cnt < SCALER) begin
cnt <= cnt + 1;
end else begin
cnt <= 0;
mtime <= mtime + 1;
end
if (mem_enable) begin
if (mem_w_mode && (mem_addr == 0)) begin
mem_error <= 0;
sip <= mem_w_data[0];
end else if (mem_w_mode && (mem_addr == 32'h4000) && (mem_size == 4)) begin
mem_error <= 0;
mtimecmp[31:0] <= mem_w_data;
// $display("D: mtimecmp=%d", mtimecmp);
// $display("D: new-data=%d", mem_w_data);
// $display("D: mtime=%d", mtime);
// $display("D: tip=%d", tip);
end else if (mem_w_mode && (mem_addr == 32'h4004) && (mem_size == 4)) begin
mem_error <= 0;
mtimecmp[63:32] <= mem_w_data;
// $display("T: mtimecmp=%d", mtimecmp);
// $display("T: new-data=%d", mem_w_data);
// $display("T: mtime=%d", mtime);
// $display("T: tip=%d", tip);
end else if (!mem_w_mode && (mem_addr == 0)) begin
mem_error <= 0;
mem_r_data <= {31'd0, sip};
end else if (!mem_w_mode && (mem_addr == 32'h4000) && (mem_size == 4)) begin
mem_error <= 0;
mem_r_data <= mtimecmp[31:0];
end else if (!mem_w_mode && (mem_addr == 32'h4004) && (mem_size == 4)) begin
mem_error <= 0;
mem_r_data <= mtimecmp[63:32];
end else if (!mem_w_mode && (mem_addr == 32'hBFF8) && (mem_size == 4)) begin
mem_error <= 0;
mem_r_data <= mtime[31:0];
// $display("> mtime[31:0]=%d", mtime[31:0]);
end else if (!mem_w_mode && (mem_addr == 32'hBFFC) && (mem_size == 4)) begin
mem_error <= 0;
mem_r_data <= mtime[63:32];
// $display("> mtime[63:32]=%d", mtime[63:32]);
end else begin
mem_error <= 1;
end
mem_done <= 1;
end else begin
mem_done <= 0;
end
end
end
endmodule
module interconnect #(
parameter RX_1_START_ADDR = 32'h8000_0000,
parameter RX_1_END_ADDR = RX_1_START_ADDR + `MEMORY_SIZE,
parameter RX_2_START_ADDR = 32'h0201_0000,
parameter RX_2_END_ADDR = 32'h0201_03ff,
parameter RX_3_START_ADDR = 32'h1001_3000,
parameter RX_3_END_ADDR = 32'h1001_3fff,
parameter RX_4_START_ADDR = 32'h0200_0000,
parameter RX_4_END_ADDR = 32'h0200_ffff
)
(
input reset,
input clock,
// master (transmit -- tx)
input [31:0] tx_mem_addr, // access addr
input [`MEMORY_ACCESS_SIZE:0] tx_mem_size, // access size (1,2,4)
input tx_mem_enable, // enable access
input tx_mem_w_mode, // use write access (otherwise read access)
input [31:0] tx_mem_w_data, // write data
output reg [31:0] tx_mem_r_data, // read data
output tx_mem_ready, // memory is ready to use (i.e. last access completed)
output reg tx_mem_error, // something went wrong (e.g. missing access rights, unmapped address, etc.)
// slave 1 (receive -- rx1)
output reg [31:0] rx1_mem_addr,
output reg [`MEMORY_ACCESS_SIZE:0] rx1_mem_size,
output reg rx1_mem_enable,
output reg rx1_mem_w_mode,
output reg [31:0] rx1_mem_w_data,
input [31:0] rx1_mem_r_data,
input rx1_mem_done, // memory access completed (since last enable)
input rx1_mem_error,
// slave 2 (receive -- rx2)
output reg [31:0] rx2_mem_addr,
output reg [`MEMORY_ACCESS_SIZE:0] rx2_mem_size,
output reg rx2_mem_enable,
output reg rx2_mem_w_mode,
output reg [31:0] rx2_mem_w_data,
input [31:0] rx2_mem_r_data,
input rx2_mem_done,
input rx2_mem_error,
// slave 3 (receive -- rx3)
output reg [31:0] rx3_mem_addr,
output reg [`MEMORY_ACCESS_SIZE:0] rx3_mem_size,
output reg rx3_mem_enable,
output reg rx3_mem_w_mode,
output reg [31:0] rx3_mem_w_data,
input [31:0] rx3_mem_r_data,
input rx3_mem_done,
input rx3_mem_error,
// slave 4 (receive -- rx4)
output reg [31:0] rx4_mem_addr,
output reg [`MEMORY_ACCESS_SIZE:0] rx4_mem_size,
output reg rx4_mem_enable,
output reg rx4_mem_w_mode,
output reg [31:0] rx4_mem_w_data,
input [31:0] rx4_mem_r_data,
input rx4_mem_done,
input rx4_mem_error
);
localparam READY = 0;
localparam BUSY_1 = 1;
localparam BUSY_2 = 2;
localparam BUSY_3 = 3;
localparam BUSY_4 = 4;
reg [2:0] state;
assign tx_mem_ready = state == READY && !tx_mem_enable;
always @(posedge clock) begin
if (reset) begin
state <= READY;
tx_mem_error <= 0;
rx1_mem_enable <= 0;
rx2_mem_enable <= 0;
rx3_mem_enable <= 0;
rx4_mem_enable <= 0;
end else begin
//NOTE: this code is dependent on the device timing. It expects that the device captures the respective *mem_enable* signal within one clock cycle.
rx1_mem_enable <= 0;
rx2_mem_enable <= 0;
rx3_mem_enable <= 0;
rx4_mem_enable <= 0;
case (state)
READY: begin
if (tx_mem_enable) begin
if (tx_mem_addr >= RX_1_START_ADDR && tx_mem_addr <= RX_1_END_ADDR) begin
rx1_mem_addr <= tx_mem_addr - RX_1_START_ADDR;
rx1_mem_size <= tx_mem_size;
rx1_mem_enable <= 1;
rx1_mem_w_mode <= tx_mem_w_mode;
rx1_mem_w_data <= tx_mem_w_data;
state <= BUSY_1;
end else if (tx_mem_addr >= RX_2_START_ADDR && tx_mem_addr <= RX_2_END_ADDR) begin
rx2_mem_addr <= tx_mem_addr - RX_2_START_ADDR;
rx2_mem_size <= tx_mem_size;
rx2_mem_enable <= 1;
rx2_mem_w_mode <= tx_mem_w_mode;
rx2_mem_w_data <= tx_mem_w_data;
state <= BUSY_2;
end else if (tx_mem_addr >= RX_3_START_ADDR && tx_mem_addr <= RX_3_END_ADDR) begin
rx3_mem_addr <= tx_mem_addr - RX_3_START_ADDR;
rx3_mem_size <= tx_mem_size;
rx3_mem_enable <= 1;
rx3_mem_w_mode <= tx_mem_w_mode;
rx3_mem_w_data <= tx_mem_w_data;
state <= BUSY_3;
end else if (tx_mem_addr >= RX_4_START_ADDR && tx_mem_addr <= RX_4_END_ADDR) begin
rx4_mem_addr <= tx_mem_addr - RX_4_START_ADDR;
rx4_mem_size <= tx_mem_size;
rx4_mem_enable <= 1;
rx4_mem_w_mode <= tx_mem_w_mode;
rx4_mem_w_data <= tx_mem_w_data;
state <= BUSY_4;
end else begin
tx_mem_error <= 1;
end
end
end
BUSY_1: begin
tx_mem_error <= rx1_mem_error;
tx_mem_r_data <= rx1_mem_r_data;
if (rx1_mem_done || rx1_mem_error)
state <= READY;
end
BUSY_2: begin
tx_mem_error <= rx2_mem_error;
tx_mem_r_data <= rx2_mem_r_data;
if (rx2_mem_done || rx2_mem_error)
state <= READY;
end
BUSY_3: begin
tx_mem_error <= rx3_mem_error;
tx_mem_r_data <= rx3_mem_r_data;
if (rx3_mem_done || rx3_mem_error)
state <= READY;
end
BUSY_4: begin
tx_mem_error <= rx4_mem_error;
tx_mem_r_data <= rx4_mem_r_data;
if (rx4_mem_done || rx4_mem_error)
state <= READY;
end
default: begin
tx_mem_error <= 1;
end
endcase
end
end
endmodule