Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add condlane #20

Merged
merged 15 commits into from
Sep 11, 2021
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ Supported detectors:
- [x] [UFLD](configs/ufld)
- [x] [RESA](configs/resa)
- [x] [LaneATT](configs/laneatt)
- [x] [CondLane] (in branch [condlane](https://github.com/Turoad/lanedet/tree/condlane), will be merged soon)
- [x] [CondLane](configs/condlane)


## Installation
<!--
Expand Down Expand Up @@ -181,6 +182,7 @@ This project is released under the [Apache 2.0 license](LICNESE).
* [ZJULearning/resa](https://github.com/ZJULearning/resa)
* [cfzd/Ultra-Fast-Lane-Detection](https://github.com/cfzd/Ultra-Fast-Lane-Detection)
* [lucastabelini/LaneATT](https://github.com/lucastabelini/LaneATT)
* [aliyun/conditional-lane-detection](https://github.com/aliyun/conditional-lane-detection)
<!--te-->

<!--
Expand Down
17 changes: 17 additions & 0 deletions configs/condlane/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

## Introduction

```latex
@article{liu2021condlanenet,
title={CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution},
author={Liu, Lizhe and Chen, Xiaohao and Zhu, Siyu and Tan, Ping},
journal={arXiv preprint arXiv:2105.05003},
year={2021}
}
```

## Models
| Architecture| Backbone |Dataset | Metric | Config| Checkpoints |
|-------------|----------|--------|--------|-------|--------------|
| CondLane | ResNet101 | CULane | F1: 79.47| [config](configs/condlane/resnet101_culane.py) |[model](https://github.com/Turoad/lanedet/releases/download/1.0/condlane_r101_culane.pth.zip) |
211 changes: 211 additions & 0 deletions configs/condlane/resnet101_culane.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
net = dict(
type='Detector',
)

backbone = dict(
type='ResNetWrapper',
resnet='resnet101',
pretrained=True,
replace_stride_with_dilation=[False, False, False],
out_conv=False,
in_channels=[64, 128, 256, 512]
)

sample_y = range(590, 270, -8)

batch_size = 8
aggregator = dict(
type='TransConvEncoderModule',
in_dim=2048,
attn_in_dims=[2048, 256],
attn_out_dims=[256, 256],
strides=[1, 1],
ratios=[4, 4],
pos_shape=(batch_size, 10, 25),
)

neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 256],
out_channels=64,
num_outs=4,
#trans_idx=-1,
)

loss_weights=dict(
hm_weight=1,
kps_weight=0.4,
row_weight=1.,
range_weight=1.,
)

num_lane_classes=1
heads=dict(
type='CondLaneHead',
heads=dict(hm=num_lane_classes),
in_channels=(64, ),
num_classes=num_lane_classes,
head_channels=64,
head_layers=1,
disable_coords=False,
branch_in_channels=64,
branch_channels=64,
branch_out_channels=64,
reg_branch_channels=64,
branch_num_conv=1,
hm_idx=2,
mask_idx=0,
compute_locations_pre=True,
location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0')
)

optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8)

epochs = 16
total_iter = (88880 // batch_size) * epochs
import math
scheduler = dict(
type = 'MultiStepLR',
milestones=[8, 14],
gamma=0.1
)

seg_loss_weight = 1.0
eval_ep = 1
save_ep = 1

img_norm = dict(
mean=[75.3, 76.6, 77.6],
std=[50.5, 53.8, 54.3]
)

img_height = 320
img_width = 800
cut_height = 0
ori_img_h = 590
ori_img_w = 1640

mask_down_scale = 4
hm_down_scale = 16
num_lane_classes = 1
line_width = 3
radius = 6
nms_thr = 4
img_scale = (800, 320)
crop_bbox = [0, 270, 1640, 590]
mask_size = (1, 80, 200)

train_process = [
dict(type='Alaug',
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
dict(
type='Crop',
x_min=crop_bbox[0],
x_max=crop_bbox[2],
y_min=crop_bbox[1],
y_max=crop_bbox[3],
p=1),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),
dict(
type='OneOf',
transforms=[
dict(
type='RGBShift',
r_shift_limit=10,
g_shift_limit=10,
b_shift_limit=10,
p=1.0),
dict(
type='HueSaturationValue',
hue_shift_limit=(-10, 10),
sat_shift_limit=(-15, 15),
val_shift_limit=(-10, 10),
p=1.0),
],
p=0.7),
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.2),
dict(type='RandomBrightness', limit=0.2, p=0.6),
dict(
type='ShiftScaleRotate',
shift_limit=0.1,
scale_limit=(-0.2, 0.2),
rotate_limit=10,
border_mode=0,
p=0.6),
dict(
type='RandomResizedCrop',
height=img_scale[1],
width=img_scale[0],
scale=(0.8, 1.2),
ratio=(1.7, 2.7),
p=0.6),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),]

),
dict(type='CollectLane',
down_scale=mask_down_scale,
hm_down_scale=hm_down_scale,
max_mask_sample=5,
line_width=line_width,
radius=radius,
keys=['img', 'gt_hm'],
meta_keys=[
'gt_masks', 'mask_shape', 'hm_shape',
'down_scale', 'hm_down_scale', 'gt_points'
]
),
#dict(type='Resize', size=(img_width, img_height)),
dict(type='Normalize', img_norm=img_norm),
dict(type='ToTensor', keys=['img', 'gt_hm']),
]


val_process = [
dict(type='Alaug',
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
dict(type='Crop',
x_min=crop_bbox[0],
x_max=crop_bbox[2],
y_min=crop_bbox[1],
y_max=crop_bbox[3],
p=1),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)]
),
#dict(type='Resize', size=(img_width, img_height)),
dict(type='Normalize', img_norm=img_norm),
dict(type='ToTensor', keys=['img']),
]

dataset_path = './data/CULane'
dataset = dict(
train=dict(
type='CULane',
data_root=dataset_path,
split='train',
processes=train_process,
),
val=dict(
type='CULane',
data_root=dataset_path,
split='test',
processes=val_process,
),
test=dict(
type='CULane',
data_root=dataset_path,
split='test',
processes=val_process,
)
)


workers = 12
log_interval = 1000
lr_update_by_epoch=True
Loading