Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add condlane #20

Merged
merged 15 commits into from
Sep 11, 2021
Prev Previous commit
Next Next commit
add condlane resnet50
  • Loading branch information
Turoad committed Jul 8, 2021
commit 315ce63f0f43aaebab9266f5a77c140f483eab3e
210 changes: 210 additions & 0 deletions configs/condlane/resnet50_culane.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
net = dict(
type='Detector',
)

backbone = dict(
type='ResNetWrapper',
resnet='resnet50',
pretrained=True,
replace_stride_with_dilation=[False, False, False],
out_conv=False,
in_channels=[64, 128, 256, 512]
)

sample_y = range(589, 230, -20)

batch_size = 8
aggregator = dict(
type='TransConvEncoderModule',
in_dim=2048,
attn_in_dims=[2048, 256],
attn_out_dims=[256, 256],
strides=[1, 1],
ratios=[4, 4],
pos_shape=(batch_size, 10, 25),
)

neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 256],
out_channels=64,
num_outs=4,
#trans_idx=-1,
)

loss_weights=dict(
hm_weight=1,
kps_weight=0.4,
row_weight=1.,
range_weight=1.,
)

num_lane_classes=1
heads=dict(
type='CondLaneHead',
heads=dict(hm=num_lane_classes),
in_channels=(64, ),
num_classes=num_lane_classes,
head_channels=64,
head_layers=1,
disable_coords=False,
branch_in_channels=64,
branch_channels=64,
branch_out_channels=64,
reg_branch_channels=64,
branch_num_conv=1,
hm_idx=2,
mask_idx=0,
compute_locations_pre=True,
location_configs=dict(size=(batch_size, 1, 80, 200), device='cuda:0')
)

optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), eps=1e-8)

epochs = 16
total_iter = (88880 // batch_size) * epochs
import math
scheduler = dict(
type = 'MultiStepLR',
milestones=[8, 14],
gamma=0.1
)

seg_loss_weight = 1.0
eval_ep = 1
save_ep = 1

img_norm = dict(
mean=[75.3, 76.6, 77.6],
std=[50.5, 53.8, 54.3]
)

img_height = 320
img_width = 800
cut_height = 0
ori_img_h = 590
ori_img_w = 1640

mask_down_scale = 4
hm_down_scale = 16
num_lane_classes = 1
line_width = 3
radius = 6
nms_thr = 4
img_scale = (800, 320)
crop_bbox = [0, 270, 1640, 590]
mask_size = (1, 80, 200)

train_process = [
dict(type='Alaug',
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
dict(
type='Crop',
x_min=crop_bbox[0],
x_max=crop_bbox[2],
y_min=crop_bbox[1],
y_max=crop_bbox[3],
p=1),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),
dict(
type='OneOf',
transforms=[
dict(
type='RGBShift',
r_shift_limit=10,
g_shift_limit=10,
b_shift_limit=10,
p=1.0),
dict(
type='HueSaturationValue',
hue_shift_limit=(-10, 10),
sat_shift_limit=(-15, 15),
val_shift_limit=(-10, 10),
p=1.0),
],
p=0.7),
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.2),
dict(type='RandomBrightness', limit=0.2, p=0.6),
dict(
type='ShiftScaleRotate',
shift_limit=0.1,
scale_limit=(-0.2, 0.2),
rotate_limit=10,
border_mode=0,
p=0.6),
dict(
type='RandomResizedCrop',
height=img_scale[1],
width=img_scale[0],
scale=(0.8, 1.2),
ratio=(1.7, 2.7),
p=0.6),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1),]
),
dict(type='CollectLane',
down_scale=mask_down_scale,
hm_down_scale=hm_down_scale,
max_mask_sample=5,
line_width=line_width,
radius=radius,
keys=['img', 'gt_hm'],
meta_keys=[
'gt_masks', 'mask_shape', 'hm_shape',
'down_scale', 'hm_down_scale', 'gt_points'
]
),
#dict(type='Resize', size=(img_width, img_height)),
dict(type='Normalize', img_norm=img_norm),
dict(type='ToTensor', keys=['img', 'img_metas', 'gt_hm']),
]


val_process = [
dict(type='Alaug',
transforms=[dict(type='Compose', params=dict(bboxes=False, keypoints=True, masks=False)),
dict(type='Crop',
x_min=crop_bbox[0],
x_max=crop_bbox[2],
y_min=crop_bbox[1],
y_max=crop_bbox[3],
p=1),
dict(type='Resize', height=img_scale[1], width=img_scale[0], p=1)]
),
#dict(type='Resize', size=(img_width, img_height)),
dict(type='Normalize', img_norm=img_norm),
dict(type='ToTensor', keys=['img']),
]

dataset_path = './data/CULane'
dataset = dict(
train=dict(
type='CULane',
data_root=dataset_path,
split='train',
processes=train_process,
),
val=dict(
type='CULane',
data_root=dataset_path,
split='test',
processes=val_process,
),
test=dict(
type='CULane',
data_root=dataset_path,
split='test',
processes=val_process,
)
)


workers = 12
log_interval = 1000
lr_update_by_epoch=True