Jump to content

August 2016 lunar eclipse

From Wikipedia, the free encyclopedia
August 2016 lunar eclipse
Penumbral eclipse
The Moon barely clipped the northern penumbral shadow of the Earth.
DateAugust 18, 2016
Gamma1.559
Magnitude−0.9925
Saros cycle109 (72 of 72)
Penumbral33 minutes, 36 seconds
Contacts (UTC)
P19:25:36
Greatest9:42:24
P49:59:12

A penumbral lunar eclipse occurred at the Moon’s descending node of orbit on Thursday, August 18, 2016,[1] with an umbral magnitude of −0.9925. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3.4 days before perigee (on August 21, 2016, at 21:20 UTC), the Moon's apparent diameter was larger.[2]

The HM National Almanac Office's online canon of eclipses lists this event as the last eclipse on Saros Series 109,[3] while NASA lists August 8, 1998 as the last eclipse of the series, and has this event missing the shadow.[4]

This eclipse grazed the northern boundary of the Earth's penumbral shadow. The event lasted 33 minutes and 36 seconds, beginning at 9:25 UTC and ending at 9:59. This produced a maximum penumbral magnitude of 0.0166.[5] Eclipses of such small magnitudes are visually imperceptible; a penumbral magnitude of approximately 0.6 is required for even skilled observers to detect.[6]

Background

[edit]

The Earth's penumbral shadow is larger than would be expected from simple geometry, a phenomenon first observed by Philippe de La Hire in 1707. The precise amount of enlargement varies over time for reasons which are not fully understood, but likely involve the amount of dust in certain layers of the Earth's atmosphere.[7] Various eclipse almanacs have used different assumptions about the magnitude of this effect, resulting in disagreement about the predicted duration of lunar eclipses or, in the case of penumbral eclipses of very short duration, whether the eclipse will occur at all.[8]

In 1989, NASA published a lunar eclipse almanac that predicted a short penumbral lunar eclipse to occur on 18 August 2016. However, the French almanac Connaissance des Temps used more conservative assumptions about the size of the Earth's shadow and did not predict an eclipse to occur at all.[8] The Bureau des Longitudes in France continued to refine their lunar eclipse models; NASA's 2009 edition of its lunar eclipse almanac was based on their values,[9] which effectively reclassified nine eclipses between 1801 and 2300 as non-events, including the one in August 2016.[a][10]

Some resources, including the HM Nautical Almanac Office's online canon of eclipses, continued to list the 18 August 2016 event. Despite not appearing in NASA's printed lists of eclipses since the 2009 revision, AccuWeather reported the upcoming eclipse and projected this was the final member of Lunar Saros 109.[11]

Visibility

[edit]

The eclipse was completely visible over Australia, North and South America, and Antarctica, seen rising over western Australia and northeast Asia and setting over eastern North and South America.[12]


Hourly motion shown right to left

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of August–September 2016
August 18
Descending node (full moon)
September 1
Ascending node (new moon)
September 16
Descending node (full moon)
Penumbral lunar eclipse
Lunar Saros 109
Annular solar eclipse
Solar Saros 135
Penumbral lunar eclipse
Lunar Saros 147
[edit]

Eclipses in 2016

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Tritos

[edit]

Lunar Saros 109

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 2016–2020

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[13]

The penumbral lunar eclipses on March 23, 2016 and September 16, 2016 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on June 5, 2020 and November 30, 2020 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 2016 to 2020
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
109 2016 Aug 18
Penumbral
1.5641 114
2017 Feb 11
Penumbral
−1.0255
119
2017 Aug 07
Partial
0.8669 124
2018 Jan 31
Total
−0.3014
129
2018 Jul 27
Total
0.1168 134
2019 Jan 21
Total
0.3684
139
2019 Jul 16
Partial
−0.6430 144
2020 Jan 10
Penumbral
1.0727
149 2020 Jul 05
Penumbral
−1.3639

Saros 109

[edit]

This eclipse is a part of Saros series 109, repeating every 18 years, 11 days, and containing 71 or 72 events (depending on the source). The series started with a penumbral lunar eclipse on June 27, 736 AD. It contains partial eclipses from September 22, 880 AD through April 16, 1223; total eclipses from April 27, 1241 through October 17, 1529; and a second set of partial eclipses from October 28, 1547 through May 22, 1872. The series ends at member 71 as a penumbral eclipse on August 8, 1998, though some sources count a possible penumbral eclipse on August 18, 2016 as the last eclipse of the series.

The longest duration of totality was produced by member 35 at 99 minutes, 45 seconds on July 1, 1349. All eclipses in this series occur at the Moon’s descending node of orbit.[14]

Greatest First
The greatest eclipse of the series occurred on 1349 Jul 01, lasting 99 minutes, 45 seconds.[15] Penumbral Partial Total Central
736 Jun 27
880 Sep 22
1241 Apr 27
1295 May 30
Last
Central Total Partial Penumbral
1421 Aug 13
1529 Oct 17
1872 May 22
1998 Aug 08

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

See also

[edit]

Notes

[edit]
  1. ^ The others are: 22 April 1864, 21 June 1872, 26 October 1882, 21 February 1951, 28 October 2042, 7 March 2194, 30 April 2219, and 18 February 2288.

References

[edit]
  1. ^ "August 18, 2016 Almost Lunar Eclipse". timeanddate. Retrieved 16 November 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 16 November 2024.
  3. ^ "Penumbral Eclipse of the Moon: 2016 August 18". Canon of Eclipses. HM Nautical Almanac Office. 22 June 2018. Archived from the original on 31 October 2018. Retrieved 11 January 2019.
  4. ^ "Catalog of Lunar Eclipse Saros Series: Saros Series 109". NASA Eclipse Web Site. Retrieved 11 January 2019.
  5. ^ Espenak 1989, p. 150.
  6. ^ Espenak & Meeus 2009, p. 11.
  7. ^ Espenak 1989, p. 205.
  8. ^ a b Espenak 1989, p. 207.
  9. ^ Espenak & Meeus 2009, p. v.
  10. ^ Espenak & Meeus 2009, p. 10.
  11. ^ Sutherland, Scott (17 August 2016). "An 'almost, maybe' lunar eclipse this week?". The Weather Network. Retrieved 10 January 2019.
  12. ^ "III. Penumbral Eclipse of the Moon" (PDF). HM Nautical Almanac Office. Retrieved 16 November 2024.
  13. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  14. ^ "NASA - Catalog of Lunar Eclipses of Saros 109". eclipse.gsfc.nasa.gov.
  15. ^ Listing of Eclipses of series 109

Bibliography

[edit]