ç¨æ°´è·¯ã®æ³¢ã観å¯ãããã¨ã¯ããã¾ããï¼å°å¦çã®ç§ã¯ç°ãã¼ã®ç¨æ°´è·¯ã«çæãçªã£è¾¼ãã§æ°´ãæ¼ããæ³¢ãä½ã£ã¦è¿½ãããããã¨ãããã¾ãããã®æ³¢ã¯çéã§ãã¼ã£ã¨é²ãã§ãã¾ããããæ³¢ã¨ä¸ç·ã«æ©ãã«ã¯å°ãé ãã£ãè¨æ¶ãããã¾ãã
ã¨ããã§ãç¨æ°´è·¯ã®ãããªæµ
ãæ°´ã®æ³¢ã®éåã¯KdVæ¹ç¨å¼ã§è¨è¿°ã§ãã¾ãã1895å¹´ãã³ã«ãã´ã§ã¼ã°(D. Korteweg)ã¨ãã»ããªã¼ã¹(G. de Vries)ãå®å¼åããã®ã§KdVã¨å¼ã°ãã¦ãã¾ãããã®è¨äºã§ã¯KdVæ¹ç¨å¼ã®è§£ã®ä¸ã¤ã§ããå¤ç«æ³¢è§£ãæ±ãã¦ããã¾ãã
å¿ è¦ãªç¥èã¨Notation
- å¾®åç©åã®åºæ¬çãªè¨ç®ï¼åæé¢æ°ã®å¾®åãç©ã®å¾®åãç½®æç©åï¼
- 2å¤æ°é¢æ°ã®ï¼ã«é¢ããå¾®åãããããï¼ã¨è¡¨ããéå¾®åã¯ã§è¡¨ãã¾ãã
- ãââââââé¢æ°ï¼ãã¿ãã¬é²æ¢ã®ããä¼åã«ãã¾ããï¼
é«æ ¡ã§ã¯ãã¾ããããªãç©åã1ã«æããã¾ãããããããããç¨åº¦ã®è¨ç®åãããã°èªããããï¼
KdVæ¹ç¨å¼ã®ç´¹ä»
\begin{equation}
\partial_t u+\partial_x^3 u+6u\partial_x u=0\qquad(t,x)\in\mathbb{R}\times\mathbb{R}.\tag{KdV}\label{k}
\end{equation}
\begin{equation*}\partial_t u+a\partial_x^3 u+bu\partial_x u=0\end{equation*}ãKdVæ¹ç¨å¼ã®åå½¢ã§ããã\begin{equation*}v(t,x):=\frac{b}{6\sqrt[3]{a}}u(t,\sqrt[3]{a}x)\end{equation*}ã¨ããã¦ããã«ä»£å ¥ããã°\eqref{k}ã«å¤å½¢ãããã¨ãã§ãã¾ããã¡ãªã¿ã«ãä¸è¬åãããKdVæ¹ç¨å¼\begin{equation*}\partial_t u+\partial_x^3 u+\partial_x(u^p)=0\qquad(p>1)\end{equation*}ã«åãããããã°ãä¿æ°ã2ããããã§ããã
KdVæ¹ç¨å¼ã«ã¯å¤ç«æ³¢è§£ã¨ãã解ãããã¾ãã
ãã¹ã¦ã®ã«å¯¾ãã¦
ï¼
å¤ç«æ³¢è§£ã®å°åº
ããã§ã¯å¤ç«æ³¢è§£ãæ±ãã¦ã¿ã¾ããããã¾ããã\eqref{k}ã®è§£ã¨ããã¨
\begin{align*}
\partial_t u &=-c\phi'(x-ct),\\
\partial_x^3 u &=\phi'''(x-ct),\\
\partial_x u &=\phi'(x-ct)
\end{align*}ã§ãããããã¯\begin{equation*}-c\phi'(x)+\phi'''(x)+6\phi(x)\phi'(x)=0\end{equation*}ãã¿ããã°ãããã¨ãåããã¾ãã以å¾ããããçç¥ãã¦\begin{equation*}-c\phi'+\phi'''+6\phi\phi'=0\end{equation*}ã¨è¡¨ããã¨ã«ãã¾ãããã®å¼ã¯ã\begin{equation*}(-c\phi+\phi''+3\phi^2)'=0\end{equation*}ã¨å¤å½¢ã§ããã®ã§ãããã¾ã§ç©åããã¨\begin{equation*}-c\phi+\phi''+3\phi^2=0\end{equation*}ãå¾ããã¾ãï¼ã®ãç¨ãã¾ããï¼ã
ããã¦ããã®å¼ã«ãæãã¦ã¿ãã¨â¦
\begin{align*}
-c\phi\phi'+\phi'\phi''+3\phi^2\phi'&=0\\
\left(-\frac{c}{2}\phi^2+\frac{1}{2}(\phi')^2+\phi^3\right)'&=0
\end{align*}ã¨ãªããã¨ã¯ç¡éé ã§ã¯0ã«è¡ãã®ã§\begin{equation*}-\frac{c}{2}\phi^2+\frac{1}{2}(\phi')^2+\phi^3=0\end{equation*}ãå¾ã¾ããï¼ãããå¾ãã®ã§\begin{equation*}\phi'=\pm\sqrt{c}\phi\sqrt{1-\frac{2}{c}\phi}\end{equation*}ã¨è¡¨ãã¦ãããããå¤æ°åé¢å½¢ã«ãªãã¾ãããã¾ããï¼ããï¼ãªã®ã§ã ã¨åããã¾ãã
両辺ãã§å²ãã0ããã¾ã§ç©åãããã£ã±ãè¨ç®ãã¾ãã
\begin{align*}
\pm\sqrt{c}x&=\int_0^x\dfrac{\phi'(x)}{\phi(x)\sqrt{1-\frac{2}{c}\phi(x)}}dx &&\\
&=\int_{\phi(0)}^{\phi(x)}\frac{1}{y\sqrt{1-\frac{2}{c}y}}dy &&(y=\phi(x)\text{ã¨ç½®æ})\\
&=\int_{1/\phi(0)}^{1/\phi(x)}\frac{1}{z^{-1}\sqrt{1-\frac{2}{c}z^{-1}}}\cdot\frac{-1}{z^2}dz &&(y=z^{-1}\text{ã¨ç½®æ})\\
&=-\int_{2/c}^{1/\phi(x)}\frac{1}{\sqrt{z^2-\frac{2}{c}z}}dz &&(\text{ã¡ãã£ã¨è¨ç®})\\
&=-\int_{2/c}^{1/\phi(x)}\frac{1}{\sqrt{(z-\frac{1}{c})^2-\frac{1}{c^2}}}dz &&(\text{å¹³æ¹å®æ})\\
&=-\int_{1/c}^{1/\phi(x)-1/c}\frac{1}{\sqrt{z^2-\frac{1}{c^2}}}dz &&(z-\frac{1}{c}\text{ãç½®æ})\\
&=-\left[\log\left(z+\sqrt{z^2-\frac{1}{c^2}}\right)\right]_{1/c}^{1/\phi(x)-1/c} &&(\text{ãã³ãï¼})\\
&=-\log\left(\dfrac{c}{\phi(x)}-1+\sqrt{\left(\frac{c}{\phi(x)}-1\right)^2-1}\right) &&(\text{è¨ç®})
\end{align*}
ãã£ã¦ã
\begin{align*}
e^{\pm\sqrt{c}x} &=\dfrac{c}{\phi(x)}-1+\sqrt{\left(\frac{c}{\phi(x)}-1\right)^2-1}\\
e^{\pm\sqrt{c}x}-\left(\dfrac{c}{\phi(x)}-1\right) &=\sqrt{\left(\frac{c}{\phi(x)}-1\right)^2-1}\\
\end{align*}
\begin{align*}
e^{\pm2\sqrt{c}x}-2e^{\pm\sqrt{c}x}\left(\dfrac{c}{\phi(x)}-1\right) &=-1\\
2e^{\pm\sqrt{c}x}\left(\dfrac{c}{\phi(x)}-1\right) &=e^{\pm2\sqrt{c}x}+1\\
\dfrac{c}{\phi(x)}-1 &=\dfrac{e^{\sqrt{c}x}+e^{-\sqrt{c}x}}{2}\\
\dfrac{c}{\phi(x)} &=\cos\!\text{h}(\sqrt{c}x)+1\\
\dfrac{c}{\phi(x)} &=2\cos\!\text{h}^2\left(\dfrac{\sqrt{c}}{2}x\right)\\
\phi(x) &= \dfrac{c}{2}\operatorname{sech}^2\left(\frac{\sqrt{c}}{2}x\right)
\end{align*}
念ã®ããæ¸ãã¦ããã¾ãããã§ããã¾ããéä¸ã§åæ²ç·é¢æ°ã®åè§ã®å
¬å¼ã使ãã¾ããããã¨ãã¨ããä¸æ¹ã®ä¸å®ããã¤ã®éã«ã解æ¶ãããæã好ãã
ã¾ã¨ã
\begin{equation*}-c\phi'(x)+\phi'''(x)+6\phi(x)\phi'(x)=0
\end{equation*}
\phi(x)=\dfrac{c}{2}\operatorname{sech}^2\left(\frac{\sqrt{c}}{2}x\right)
\end{equation*}ã§ä¸ãããï¼
\begin{align*}
u(t,x)&=\phi(x-ct)\\
&=\dfrac{c}{2}\operatorname{sech}^2\left(\frac{\sqrt{c}}{2}(x-ct)\right)
\end{align*}ã¯\eqref{k}ã®è§£ã§ããï¼
ãããä½ãããã£ã½ããã¾ããå¼ã®å½¢ãããé«ãæ³¢ã¯æ³¢ã®é²è¡é度ãéããã¨ãåããã¾ãã
ãã¡ãã®ãªã³ã¯ã§å¤ç«æ³¢ã確èªã§ãã¾ãã
Solitary wave solution of KdV equation
ã¡ãªã¿ã«ã1次å ã®éç·å½¢ã·ã¥ã¬ãã£ã³ã¬ã¼æ¹ç¨å¼\begin{equation*}i\partial_t u+\partial_x^2 u=-|u|^2 u\end{equation*}ã®å®å¨æ³¢è§£\begin{equation*}u(t,x)=e^{i\omega t}\phi(x)\end{equation*}ãå¤ç«æ³¢è§£\begin{equation*}u(t,x)=e^{i\omega t}\phi(x-ct)\end{equation*}ãä»åãã£ãè¨ç®ã¨åæ§ã«ãã¦æ±ãããã¾ããã¾ããã©ããªï¼ã«å¯¾ãã¦ãå¤ç«æ³¢ã¯ãå®å®ããªã®ãï¼ã¨ãã£ã解æå¦ã®ç 究åéãããã¾ãã
ä¸å¿ããã§ãæ³¢åæ¹ç¨å¼ãç 究ãã¦ããã®ã§ããã®å¨è¾ºã®è©±ãå å®ããããã¨æã£ã¦ãã¾ãã
thank Q for rEaDing.Ï(ã»â½ã» )
åèæç®
å°æ¾¤å¾¹ãæãäºééç·å常微åæ¹ç¨å¼ã®è§£ã®è¡¨ç¤ºãhttp://www.ozawa.phys.waseda.ac.jp/pdf/second_ODE.pdf