è«æèªã¿ä¼ KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations

è«æèªã¿ä¼ KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
AIã»æ©æ¢°å¦ç¿ã®ãæå 端ãã¯ããã¸ã¼ãã¨ããã¸ãã¹æ´»ç¨ãã¼DEEP LEARNING LAB 2018 æ¨ä»ãé¢é£ãããã¥ã¼ã¹ãèããªãæ¥ã¯ãªãã»ã©å ç±ãã¦ãããAIã»æ·±å±¤å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ï¼ã Qiitaã§ããã¿ã°ã®ç·åã©ã³ãã³ã°ã§ãPythonã1ä½ã®javaScriptã«è¿«ã£ã¦ãããå¢ããã¿ãã¦ãã¾ãã ãããªæ·±å±¤å¦ç¿ã®å¢ããå éãããä¸ç«¯ãæ ãã Preferred Networksã¨ãã¤ã¯ãã½ãããç«ã¡ä¸ãããæ¥æ¬æ大ç´ã®æè¡æ¨é²ã³ãã¥ããã£ãDEEP LEARNING LABãã å æ¥ãåã³ãã¥ããã£ããAIã»æ©æ¢°å¦ç¿ã®ã¤ãã³ãã§æ¥æ¬æ大ç´ã¨ãããããDEEP LEARNING LAB 2018ããéå¬ãã¾ããã Qiita Zineã§ã¯ããæå 端ã®ãã¯ããã¸ã¼ãã¨ããå®ç¤¾ä¼ã§ã®å¿ç¨ãã®è¦³ç¹ããã4ã¤ã®ã»ãã·ã§ã³ã«ã¤ãã¦ã¬ãã¼ããã¾ãã æå 端æè¡ç·¨ ç 究ãå éããCha
2018/09/26 BIT VALLEY -INSIDE- Vol.1ã§ã®çºè¡¨è³æã§ãã HRãã¸ãã¹ï¼äººæç´¹ä»ç³»ãµã¼ãã¹ï¼ã«ããããã¼ã¿ãµã¤ã¨ã³ã¹ã®é©ç¨äºä¾ãªã©ãç´¹ä»ãã¦ãã¾ããRead less
ã¤ãããªããã«ãããã³ã·ã¼ãæ±ãã¦: å ¨ã¦è¦ãã¾ãï¼ SmartHR ãã¼ã¿ãã¼ã¹ç§»è¡ããã¸ã§ã¯ãã®è£å´ / builderscon 2018
ã¯ããã« ä»äºã§circleciããªãã¨ãªã¼ã使ã£ã¦ãã¾ãã 使ãããªããããªã£ãã®ã§æ¹ãã¦å人ã§ããããã試ãã¦ã¿ãã¡ã¢ã§ãã ã¢ã¸ã§ã³ã CircleCIã¨ã¯ CIã£ã¦ãªããã CircleCIã£ã¦ãªããã CircleCIã®ç¹å¾´ CircleCIã®æé CircleCIã«å¿ è¦ãªãã® CircleCIã使ã£ã¦ã¿ã CircleCI/githubã®é£æºã確èªãã 1. CircleCIã¨ã¯ ããã§ã¯CircleCIã£ã¦ãããªãã®ï¼ã¨ããããããªå 容ãç°¡åã«ã¾ã¨ãã¦ããã¾ãã CIã£ã¦ãªããã CI(continuous integration: ç¶ç¶çã¤ã³ãã°ã¬ã¼ã·ã§ã³)ã¨ã¯ãªãããã¨ããã®ã¯ç¥ã£ã¦ãåæã§ããä¸å¿è¼ãã¦ããã¾ãã å®å®ã®wikipediaããå¼ç¨.. CIï¼è±: continuous integrationï¼ã¨ã¯ã主ã«ããã°ã©ãã¼ã®ã¢ããªã±ã¼ã·ã§ã³ä½ææã®å質æ¹åãç´æ
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 2018å¹´ç¾å¨ã§ãJavaéçºããã¦ããã¨ãAntãã使ã£ã¦ããªãEclipseããã¸ã§ã¯ãã«ããããã®é »åº¦ã§åºãããã¾ããEclipseã®èªåã³ã³ãã¤ã«ãéãã°OKã§ããããã«ãã¯Excelæé æ¸ããã¨ã«æåã§è¡ãããä¾åé¢ä¿ã©ã¤ãã©ãªã¯ãã¡ããlibãã©ã«ãã«å種jarãã¡ã¤ã«ãæ¾ãè¾¼ãã§ããã¾ããEclipseä¸ä»¥å¤ã§ã¯ã©ãåããã°åãã人ãããªããããã³ãã³ãã©ã¤ã³ãããã«ããªã©ãè¡ããã¨ã¯å¶ãããCIåãªãã¦å¤¢ã®ã¾ã夢ã§ãã ãããªJavaéçºããè±å´ããã人åãã®Javaéçºã®ã¢ãã³åã¬ã¤ãã§ãã åºæ¬çã«Java 8以éã§
This document summarizes a Chainer meetup where Yuta Kashino presented on PyTorch. Key points discussed include: - Yuta Kashino is the CEO of BakFoo, Inc. and discussed his background in astrophysics, Zope, and Python. - PyTorch was introduced as an alternative to Chainer and TensorFlow that is Pythonic and defines models dynamically through code. - PyTorch uses autograd to track gradients like Ch
ã¯ããã« ååã¯ãMapReduceã¨ãã®å®è£ ã§ããApache Hadoopã®æ¦è¦ã«ã¤ãã¦èª¬æãã¾ãããä»åã¯ãApache Hadoopã«ããã¦è¨ç®æ©ã¯ã©ã¹ã¿ã®ãªã½ã¼ã¹ç®¡çãè¡ãYARNã«ã¤ãã¦è§£èª¬ãã¾ãã å¤ç¨®å¤æ§ãªå¦çç³»ã®ç»å ´ Hadoopã®ç»å ´ã1ã¤ã®å¥æ©ã¨ãã¦ãã³ã¢ãã£ãã£ãªè¨ç®æ©ãè¤æ°å°ç¨ããè¨ç®æ©ã¯ã©ã¹ã¿ä¸ã§ãã¼ã¿å¦çãè¡ããã¨ãåºãæ®åãã¤ã¤ããã¾ãããã¨ãã°ãHadoop MapReduceã¨æ¯ã¹ã¦ã¢ããªã±ã¼ã·ã§ã³ã®è¨è¿°æ§ãæè»ã§ãããããé«å¹çãªå®è¡ãå¯è½ã§ããApache SparkãApache TezãApache Flinkãã¯ããã¨ããä½ãé 延ã§å®è¡å¯è½ãªApache ImpalaãFacebook PrestoãApache Drillãã¾ãã大éã®ã¹ããªã¼ã ãã¼ã¿ãä½ãé 延ã§å¦çå¯è½ãªãã¼ã¿å¦çç³»ã§ããApache StormãTwitter Heron
A perfect Hive query for a perfect meeting (Hadoop Summit 2014) During one of our epic parties, Martin Lorentzon (chairman of Spotify) agreed to help me to arrange a dinner for me and Timbuktu (my favourite Swedish rap and reggae artist), if I prove somehow that I am the biggest fan of Timbuktu in my home country. Because at Spotify we attack all problems using data-driven approaches, I decided to
1. 1 ãã¬ã¸ã£ã¼ãã¼ã¿æ ªå¼ä¼ç¤¾ 2014/06/10 Takahiro Inoue (Chief Data Scien:st) taka@treasure-Ââdata.com 2. 2 1. Introduc:on 1)⯠ä¼ç¤¾æ¦è¦ 2)⯠製åæ¦è¦ 2. Data Collec:on 3. Data Storage 4. Data Management 5. Data Processing 1)⯠ãããã¯ã¨ãª 2)⯠ã¢ãããã¯ã¯ã¨ãª(TQA) 6. Data Mart 7. Data Visualiza:on 1)⯠Metric Insights 2)⯠Tableau ã¢ã¸ã§ã³ã 5. Data Processing 7. Data Visualiza5on 3. Data Storage 2. Data Collec5on Data Source 6. Data Mart
è¨èªå¦çå¦ä¼ç¬¬ï¼ï¼å年次大ä¼ï¼2014/3ï¼ã®ãã¥ã¼ããªã¢ã«è¬ç¾©è³æã§ãã - è¦æ¨ - ææ³å§ç¸®ã¨ã¯ï¼å ¥åããã¹ããããã³ã³ãã¯ããªæèèªç±ææ³ï¼CFGï¼ã«å¤æããå§ç¸®æ³ã®ç·ç§°ã§ããï¼ ææ³å§ç¸®ã®å¼·ã¿ã¯å§ç¸®ããã¹ããå±éãããã¨ç¡ãï¼æ¤ç´¢çã®ããã¹ãå¦çãå¹çããè¡ããç¹ã«ããï¼ é©ãã¹ããã¨ã«ãã®å¦çé度ã¯ï¼å ããã¹ãä¸ã§ã®åãå¦çãçè«çã«ï¼æã«ã¯å®éã«ãåé§ããï¼ ã¾ãè¿å¹´ï¼ã¦ã§ãã¢ã¼ã«ã¤ãããã°ï¼ã²ãã é åçã®å¤§è¦æ¨¡å®ãã¼ã¿ãé«å¹çã«å§ç¸®ã§ãããã¨ã§æ³¨ç®ãéãã¦ããï¼ ããããªããï¼ææ³å§ç¸®ã«ã¤ãã¦ã®åå¦è åãã®è§£èª¬è³æã¯ã¾ã ã¾ã å°ãªãï¼ ããã§æ¬ãã¥ã¼ããªã¢ã«ã§ã¯ï¼ææ³å§ç¸®ã®æ´å²çèæ¯ããææ°ååã¾ã§ãå¹ åºãç´¹ä»ããï¼ å ·ä½çã«ã¯ææ³å¤æã¢ã«ã´ãªãºã ï¼å§ç¸®ããã¹ãä¸ã§ã®æååãã¿ã¼ã³æ¤ç´¢ï¼ææ³å§ç¸®ã«åºã¥ãçã¡ã¢ãªãã¼ã¿æ§é çã®è§£èª¬ãè¡ãï¼Read less
å é±ã®PFIã»ããã¼ã§ãStatistical Semanticså ¥éã¨ããçºè¡¨ããã¾ããã 主ã«åå¸ä»®èª¬ããã¼ã¹ã«ãããåèªã®æå³ãæèã®åå¸ã§è¡¨ç¾ããç 究ãçºãã¾ããã LSIããå§ã¾ã£ã¦ãPLSIãLDAã¨ç¶ãè¨èªã¢ãã«ç³»ãNMFãªã©ã®è¡åå解系ãããã¦NNLMãRNNLMã¨æ¥ã¦æ¨å¹´æµè¡ãããã¥ã¼ã©ã«ãããç³»ã®3ã¤ã§ã¾ã¨ããã¨ããå½¢ãã¨ã£ã¦ãã¾ãã ãã¾ãå°éçã«ãªãããããéå»ããã®æ´å²ãæµããè¸ã¾ããä¸æ¹ã§å®ç¨é¢ãç 究ãã¼ãã®ã³ã³ããåé¡æèãéè¦ãããããªå 容ã«ãªãããã«å¿ãããã¤ããã§ã¯ããã¾ãã å½åãä»ã®ãããããæå³è«ãã¨ã®æ¯è¼ã¿ãããªã¹ã©ã¤ãããã£ãã®ã§ãããå¤ãªã³ãè¨ãã¨åºãããã¨æã£ãã®ã§æ¶ãã¾ããï½ ã¨ããã§ãå¿ç¨ã®è¦³ç¹ã§ãããã®è©±ãã©ãèãã¦ããããã¨ãããããªç¹ã«ã¤ãã¦è§¦ããã®ãå¿ãããªãã¨æã£ãã®ã§ãã¡ãã«æ¸ãã¦ã¿ã¾ãã åºæ¬çã«ç§è¦ã§ããã ç§èªèº«ã¯ãå
ããããã¯ã¼ã¯ã¹ã®ã¨ã³ã¸ãã¢ã¯ããæé57åPVãã¨ãã巨大ãªãã©ãã£ãã¯ããã°ãããããã¾ãã¾ãªæè¡ãé§ä½¿ãã¦ã¤ã³ãã©ãæ§ç¯ãã¦ããã主ã¨å¯ã®2æ¬ç«ã¦ã§ãã¼ã¿ãã¼ã¹ãéç¨ãã300å°ã®ãµã¼ãã使ããªãããè² è·ã®éçãã«æãã¨ã³ã¸ãã¢ã«ãæè¡ãã¦ãã¦ãèãã ããããã¯ã¼ã¯ã¹ãéå¶ããã±ã¼ã¿ã¤ããã°ãµã¼ãã¹ãDECOLOGãã¯ãç°è²ã®ãµã¼ãã¹ã§ããã10代å¾åãã20代ååã®å¥³æ§ã«æã人æ°ã®ããã±ã¼ã¿ã¤ããã°ãµã¼ãã¹ã§ãããã³ã¡ã¼ã«ããªã©ãå©ç¨ãã¦ãããããã«ã©ãã«ãªããã°ãä½æã§ãããåºååºæºãå³ãããããã¨ã§å¥³æ§ã¦ã¼ã¶ã¼ã«ãä¸å®ãªã使ã£ã¦ãããããããªå®å¿æãä½ãåºããå£ã³ãã ãã§ããããã¨ã¢ã¯ã»ã¹æ°ã伸ã°ãã¦ããã çµæã2010å¹´7æå®ç¸¾ã§æé57åPVï¼ãã¼ã¸ãã¥ã¼ï¼è¶ ãæ³å®800ä¸UUï¼ã¦ãã¼ã¯ã¦ã¼ã¶ã¼ï¼ãä¼å¡ç»é²è æ°180ä¸ä»¶ã¨ãã±ã¼ã¿ã¤ããã°ãµã¤ãã§ã¯å½å æ大ã®ãµã¼ãã¹ã¨ã
1.4ç³»ã§æ°ãã追å ããã主ãªæ©è½ãã¦ã¯ ãã¤ããªãããã³ã«ã®å°å ¥ ãã«ãã¹ã¬ããã®æ¨æºå çµ±è¨ã®å¼·å ãªã©ãä¸ãããã¾ãããã®1.4ç³»ã®æ©è½ã®è©³ç´°ã«ã¤ãã¦ã¯ååå¾¹æ°ã®é£è¼ãmemcached 1.4ã®å°æ¥ããåèã¨ãªãã¾ããããã§ã¯ãã¼ã¸ã§ã³1.2.5ã¨ææ°ã®1.4.5ã®èµ·åãªãã·ã§ã³ãæ¯è¼ããªãããæ°ãã追å ãããæ©è½ãå®éã®éç¨ã§ç¨ããããèµ·åãªãã·ã§ã³ã«ã¤ãã¦èª¬æãã¾ãã 1.2ç³»ã¨1.4ç³»ã®èµ·åãªãã·ã§ã³ã®éã ã¾ããmemcachedã®èµ·åãªãã·ã§ã³ã®ä¸è¦§ï¼ãã«ãï¼ã確èªãã¾ããããmemcachedã®ãã«ããåºåããã«ã¯ããâ -hããªãã·ã§ã³ã使ãã¾ãã $ memcached -h memcached 1.x.x -p <num> TCP port number to listen on (default: 11211) -U <num> UDP port number t
, 2006.3.13 Topic URL= http://www.mibel.cs.tsukuba.ac.jp/~myama/pdf/topic2006.pdf ⢠â ⢠ex. ⢠â â â ⢠⢠UM DM PLSI LDA [ 1999] HDP � �� �� �� �� �� ��������������������������������������������������������� Eurospeech ã¸ãáળââ¥â⴫ળ ᤠâ ⸠â â¸ âº à¡ à º à¡ ã ã ª ⺰ ᢥ ᢠà¡à ¬à ²à¡¯ã°ß㧠1/2 ⢠⢠n-gram â Noisy Channel Models â â ⢠â â 2/2 ⢠PLSI LDA Probabilisitic LSI Latent Dirichlet Allocation UM DM Unigram Mixtures Diri
http://ss-o.net/json/ 以ä¸ã«å¯¾ãã¦ã.htaccess㧠Header append Access-Control-Allow-Origin: *ã¨ããæå®ããã¦ããããã¼ã«Access-Control-Allow-Originãã¤ãã¦ããã®ã§ã(*ã¯ãã¹ã¦ã®ãã¡ã¤ã³ããã®ãªã¯ã¨ã¹ãã許å¯) http://ss-o.net/json/wedataAutoPagerize.json http://ss-o.net/json/wedataLDRize.json ãªã©ã®ãã¡ã¤ã«ã«ã¤ãã¦ã¯Firefox3.5ãSafari4ãGoogle Chrome 2ãIE8*1ãªã©ã®ãã©ã¦ã¶ã§ã¯ã¯ãã¹ãã¡ã¤ã³ã§XMLHttpRequestãæãããã¨ãã§ãã¾ãã ãµã³ãã«ã³ã¼ã javascript:(function(){ var xhr=window.XDomainRequest?
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}