æ¨å¹´æ«ï¼2023/12/08ï¼ãååã® K, L, M, N... æ®»ã®å®å¡ã 2, 8, 18, 32... ã ã¨ãæ¸ããã®ã§ãããããã¯ä¸»éåæ°ã n ã¨ããã°å®å¡ã 2n2 ã¨ããé¢ä¿ãããã¹ã¦ã® n ã«å¯¾ãã¦ââãæãç«ã¤ããããªãã¨ãèãã¦ããããæ°å¦ç帰ç´æ³ã®è©±ãããããªã£ã¡ãã£ã¦ãããã¦ãæ°å¦ç帰ç´æ³ãèªããªãèªç¶æ°ãæ§æããããã¢ãã®å ¬çããç´¹ä»ããªãããã¨ãå ã»æ°´ã®åæå±ããã®é ã®ä¸ã§ã¯ãã®ããã«ã¤ãªãã£ã¦ããã®ã§ãããåçªã§ããããããç³ã訳ãªããã©ãç§ã®åæãæ°ã¾ããã§ãã
ãã¦ãä»åã¯ãæ°å¦ç帰ç´æ³ã§è¨¼æãã¾ããããã®ä¾é¡ã«ãªãä¸è§æ°ã¨åè§æ°ã®è©±ããã
ä¸è§æ°ãåè§æ°ã§æ°å¦ç帰ç´æ³
ä¸å³ã®ããã«ãç¹ãæ£ï½è§å½¢ã«ä¸¦ã¹ãã¨ãã®ç¹ã®ç·æ°ã«ãªãæ°ããï½è§æ°ãã¨ããã¾ãï¼ãã¡ãããç¹ãã®ä»£ããã«ãã¯ããã§ãããã§ãï¼ã
å
·ä½çã«æ¸ãåºãã¦ã¿ãï¼
ãä¸è§æ°ï¼ã1, 3, 6, 10, 15, 21, ...
ãåè§æ°ï¼ã1, 4, 9, 16, 25, 36, ...
ï½çªç®ã®ä¸è§æ°ã¯ã1ããï½ã¾ã§ã®èªç¶æ°ã®åãï½çªç®ã®åè§æ°ã¯ã1ããï½çªç®ã¾ã§ã®å¥æ°ã®åããããã£ã¦ãΣ è¨å·ã使ã£ã¦è¡¨ç¾ãã¦ã¿ããã®ã®ã Tr(n), Sq(n) 㯠n ã®2次å¼ã«ãªãã¾ãï¼å¹³é¢ä¸ã«âã並ã¹ã¦ããããã«ã¯2次ã§ãªãã¨ï¼ã
å³ãè¦ãã°ãä¸è§æ°ã¯å°å½¢ã®é¢ç©ã®å ¬å¼ã§åºã¦ããããªæ°ããã¦ããã¨æãã¾ããä¸åº aãä¸åº bãé«ãã h ã¨æ¸ã㨠S = (a+b)Ãh÷2 ã§ããããæä¸æ®µ a=1, æä¸æ®µ b=n, æ®µæ° h=n ã¨ããã°ãã®ã¾ãã¾ãå ¬å¼ãã«ãªã£ã¦ãã¾ãã¾ããæåçã¾ãã«ã¯ãç©ã¿ä¸ãã米俵ã®æ°ãæ±ããã俵ç®ãã¨ãã¦ããªãã¿ã®ãã®ï¼æ±æ¸æ代ã®å¡µå«è¨ã«ããã£ãã¯ãï¼ãããä¸ã¤ã®åè§æ°ã¯ããªãã ãªãã»ã©ãå¹³æ¹æ°ã®ãã¨ã§ããã
ãã¦ãä¸ã«ç¤ºãã n ã®å¼ãæ°å¦ç帰ç´æ³ã§è¨¼æãããã¨ããã®ã¯ããããããªç·´ç¿åé¡ã§ããä¸è§æ°ã¯ä¿µç®ã®å ¬å¼ã§ããã¨ãã¦ãåè§æ°ã®æ¹ã ããã£ã¦ã¿ã¾ãããã
====================================================
示ãããå½é¡ã¯ P(n) : 1+3+5+・・・+(2n-1) = n2 ã§ãã
â P(1) : 1 = 12 ãªã®ã§æç«
â P(k) = 1+3+5+・・・+(2k-1) = k2  ãæãç«ã¤ã¨ããã¨ã
ãP(k+1) =1+3+5+・・・+(2k-1) +[2(k+1)-1]ããâ» ä¸ç·é¨å㯠k2
        = k2 + 2k + 1ãããããããããã ã â» [ ] ãå¤ãã¦è¨ç®
        = (k+1)2ããããããã ããããã ãâ» ããç¥ã£ã¦ããå æ°å解
ãP(k+1) =1+3+5+・・・+(2k-1) +[2(k+1)-1] = (k+1)2ããæãç«ã¤
æ°å¦ç帰ç´æ³ã«ãããP(n) ã¯ä»»æã®èªç¶æ° n ã«ã¤ãã¦æç«ããããQ. E. D. (i)
====================================================
(i) DAIGO 風ã«ãQuestion Eããæã㧠Dã§ãããã£ã¦ããããã®ã§ãããæ¬å½ã¯ãã©ãã³èªã® Quod Erat Demonstrandum ï¼è±èªã§ which was to be demonstrated ã®æï¼ã®çç¥å½¢ããããã示ãããã¹ããã¨ã§ãã£ããâã証æçµãããã§ãã
Â
ããä¸ã¤ãè¨ç®åé¡ã§ããé£ç¶ããä¸è§æ°ã®åã¯åè§æ°ã«ãªãã¾ãã
ã1+3=4, 3+6=9, 6+10=16, 10+15=25, ・・・
Tr(n), Sq(n) ã¯åãã£ã¦ãã¾ããããããæ°å¦ç帰ç´æ³ã¯ããã¾ãããTr(n) ã®å¼ã« n=k 㨠n=k+1 ãä½ã£ã¦è¨ç®ããã°ããã§ããã
Â
ç·´ç¿åé¡ã²ã¨ã²ãã
ãã¹ã¦ã®èªç¶æ° n ã«ã¤ãã¦ãP(n) : 1000n + (-1)n-1  㯠11ã®åæ°ã§ããããããæ°å¦ç帰ç´æ³ã§è¨¼æãã¾ãããã
ã¾ããn=1 ã®ã¨ãã P(1)ï¼ 1000 +(-1)0 = 1001 = 11ã»91 ã§æç«ãã
次ã«ãn=k ã®ã¨ãã1000k + (-1)k-1 = 11m ï¼m ã¯æ´æ°ï¼ã¨æ¸ããã¨ä»®å®ãã
ãï¼ â 1000k = 11m + (-1)k ã¨ãªãã符å·ã¨ææ°ã«æ³¨æãã¦ï¼ï¼
 n=k+1 ã®ã¨ãã
ã1000k+1 + (-1)k = 1000ã»1000k + (-1)kÂ
ãããããã= 1000ã» [11m + (-1)k ] + (-1)kÂ
ãããããã= 1000ã»11m + 1000ã»(-1)k + (-1)k ãâ» (-1)k ã 1001 ã³ã«ãªã£ãï¼
ãããããã= 11ã» [1000m - 91ã»(-1)k ]Â
 [ ] ã®ä¸ã¯æ´æ°ãªã®ã§ n=k+1 ã®ã¨ãã 11ã®åæ°ã«ãªãã
以ä¸ãæ°å¦ç帰ç´æ³ã«ããã
ãã¹ã¦ã®èªç¶æ° n ã«ã¤ã㦠1000n + (-1)n-1  㯠11ã®åæ°ã§ããããQ. E. D.Â
â» è¨ç®ã«å¼·ã人ãªãç¥ã£ã¦ããããã11ã®åæ°ã®è¦åãæ¹ã®ã²ã¨ã¤ããã®äºå®ããå°ããã¾ããã¾ãã91 = 7Ã13 ãªã®ã§ã7, 13ã®åæ°ã®è¦åãæ¹ã«ãå¿ç¨ã§ãã¾ããï½ã・・・・・・ 7ã¯ã¾ã ããã13ã®åæ°ãã©ãããªãã¦è¦åãããã¨ã¯æããªããï½ãé»åãã£ã¦ãï½ãï¼
Â
ä½è«ã§ãããä¸è§å½¢ã§åè§æ°ã
試é¨åé¡ã§ãããããã¿ã¼ã³ã§ãããä¸è§å½¢ãè¦ãã¦ãããªããå®ã¯åè§æ°ãã¨ããã®ãã覧ããã ãã¾ããããä¸å¦å ¥è©¦ã§åºé¡ãããããªæ°ããã¾ãã
ä¸ã®ãããªå³ã§ãN段ç®ã®ã©ããã®æ°åãçããããåé¡ãåºãããããªãããªãã¨æãããã§ãã
ããè¦ãã¨ãå段å³ç«¯ã®ä¸è§å½¢ã«å ¥ãæ°åã¯åè§æ°ï¼å¹³æ¹æ°ï¼ãN段ç®ã®å³ç«¯ã¯ N2 ã«ãªãã¾ãããN段ç®ã¾ã§ã®åè¨ãæ±ãããã«ãªãã¨ãããã¯æå¾ã®æ°ãåè§æ°ã ãã© 1ãã N2 ã¾ã§ã®èªç¶æ°ã®åãä¸è§æ°ã使ãåé¡ã§ãã
ã²ã£ããããªãããã«ãåé¡ãããèªãã§ï¼
Â
ãããªãä¸è§ãã¾ãæ¥ã¦åè§ãåè§ã¯è±è ãè±è ã¯ç½ããç½ãã¯ã¦ãµã®ãã¦ãµã®ã¯è·³ãããè·³ããã¯ã«ã¨ã«ãã«ã¨ã«ã¯ã¿ã©ããã¿ã©ãã¯æ³ãæ³ã¯ãããããããã¯å¹½éãå¹½éã¯æ¶ãããæ¶ããã¯é»æ°ãé»æ°ã¯å ããå ãã¯ãªã¤ã¸ã®ãã²é (ii)
ããQ. E. D.Â
(ii) å°åæ§ããããæ代ã«ãã£ã¦ãå¤åããããããã§ããã¨ã«ããããªã¤ã¸ã®ãã²é ãå ãã¨ããã¾ã§å°éããªãã¨ããã¡ã«å¸°ãã¾ããã
Â
次åã¯ãæµ·ã®è©±ã«æ»ã£ã¦ããããã«ã¼ã®ã³ã³ãã¢ãã«ããã«ã¤ãã¦ã