ã¡ãã¦ã¹å¤æã®åæãè¡åã®ç©ã¨åãè¦åã«ãªããã¨ããé ã追ã£ã¦èª¬æãã¾ãã
ç®æ¬¡
ã¡ãã¦ã¹å¤æ
ã¡ãã¦ã¹å¤æã¯ãè¤ç´ æ°ã®åæ°ã®å½¢ã§å®ç¾©ããã¾ãã
ããã§ã$z, a, b, c, d$
ã¯è¤ç´ æ°ã§ããã$ad - bc \neq 0$
ã§ãããã®æ¡ä»¶ã«ããã$f(z)$
ãå®æ°é¢æ°ã¨ãªã£ãããåæ¯ã $0$
ã¨ãªãã±ã¼ã¹ãé¤å¤ãã¾ãã
æ¡ä»¶
åæ¯ã¨ååãå®æ°åã®é¢ä¿ã¨ãªãæ¡ä»¶ãèãã¾ãã
å®æ°ãè¤ç´ æ° $x$
ã¨ããã°ã$ax=c$
ã㤠$bx=d$
ãã $ad-bc=0$
ã¨ãªãã¾ãã
åæ¯ã¨ååãå®æ°åã®é¢ä¿ã«ãªãã°ãã¡ãã¦ã¹å¤æã¯å®æ°é¢æ° $f(z)=\dfrac1x$
ã¨ãªããããå¼æ°ã®æ
å ±ã失ããã¦éå¤æãã§ããªããªãã¾ãã
ã¾ããåæ¯ã $0$
ã¨ãªãã±ã¼ã¹ã¯ $x=0$
ã¨ãã¦å«ã¾ãã¾ãã
å次座æ¨
æåã¨é¤æ°ãã»ããã«ãã座æ¨ãå次座æ¨ã¨å¼ã³ã¾ãã
è¤ç´ 1 次å ã®å ´åãåç´ã«ååã¨åæ¯ã«å¯¾å¿ãã¾ããæ¬è¨äºã§ã¯å次座æ¨ã縦ãã¯ãã«ã§è¡¨ç¾ãã¾ãã
\frac{a}{b} \cong \begin{pmatrix}a \\ b\end{pmatrix}
åæ°å½¢ã§ãªãå ´åãé¤æ°ã 1 ã¨ãã¾ãã
z \cong \begin{pmatrix}z \\ 1\end{pmatrix}
å次座æ¨ã¯ãé¤æ°ã 0 ã¨ãããã¨ã§ç¡éé ç¹ã表ç¾ã§ãã¾ãã
â \cong \begin{pmatrix}1 \\ 0\end{pmatrix}
â» ããã§ã¯å½¢å¼çã« $â$
ã¨æ¸ãã¦ãã¾ãããå²ãç®ã¨ãã¦è¨ç®ãã¦ããããã§ã¯ããã¾ãããå次座æ¨ã¯å²ãç®ã¨ã¯åãé¢ãã¦ãåã«ãã®ãããªæåã®åº§æ¨ã¨ãã¦æ±ãã¾ãã
è¡å表ç¾
ã¡ãã¦ã¹å¤æã®å³è¾ºãå次座æ¨ã§ãã¯ãã«åããã°ãä¿æ°ãè¡åã«åé¢ã§ãã¾ãã
f(z)=\frac{az + b}{cz + d} \cong \begin{pmatrix}az + b \\ cz + d\end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix}
ããã«ãããè¤ç´ æ°å¹³é¢ä¸ã§ã®ã¡ãã¦ã¹å¤æãç·å½¢ä»£æ°ã®æ çµã¿ã§æãããã¨ãã§ããããã«ãªãã¾ãã
å ·ä½çã«ã¯ãã¡ãã¦ã¹å¤æã«å¯¾å¿ããã®ã¯ä¿æ°ãåé¢ããè¡åã®é¨åã§ãã
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
é£ç¶ããã¡ãã¦ã¹å¤æã¯ãè¡åã®ç©ã«ãã£ã¦åæã§ãã¾ãã
f \circ f \cong\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} =\begin{pmatrix}a^2+bc & ab+bd \\ ca+dc & cb+d^2\end{pmatrix}
è¤ç´ æ°ã¨ãã¦ã®è¨ç®ã¨çµæãä¸è´ãã¾ãã
(f \circ f)(z) &=f(f(z)) \\ &=f\left(\frac{az + b}{cz + d}\right) \\ &=\frac{a\left(\dfrac{az + b}{cz + d}\right) + b}{c\left(\dfrac{az + b}{cz + d}\right) + d} \\ &=\frac{\dfrac{a(az + b) + b(cz + d)}{cz + d}}{\dfrac{c(az + b) + d(cz + d)}{cz + d}} \\ &=\frac{a^2z + ab + bcz + bd}{caz + cb + dcz + d^2} \\ &=\frac{(a^2+bc)z+(ab+bd)}{(ca+dc)z+(cb+d^2)} \\ &\cong\begin{pmatrix}a^2+bc & ab+bd \\ ca+dc & cb+d^2\end{pmatrix}\begin{pmatrix} z \\ 1 \end{pmatrix}
ãã®ããã«ãè¡åã®ç©ã¨ãã¦è¨ç®ããæ¹ãè¦éããè¯ãã¦ç°¡åã§ãã
â» ãã®çµæã¯ãçµåæ³å $A(BC)=(AB)C$
ããç解ã§ãã¾ãã
\underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} z \\ 1 \end{pmatrix}\right\}}_{f(f(z))} &=\underbrace{\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right\}\begin{pmatrix} z \\ 1 \end{pmatrix}}_{(f \circ f)(z)} \\ \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix}az + b \\ cz + d\end{pmatrix}}_{f\left(\frac{az + b}{cz + d}\right)} &=\begin{pmatrix}a^2+bc & ab+bd \\ ca+dc & cb+d^2\end{pmatrix}\begin{pmatrix} z \\ 1 \end{pmatrix}
åè
ã¡ãã¦ã¹å¤æï¼ä¸æ¬¡åæ°å¤æï¼ã表ãå 容ã«ã¤ãã¦ã¯ããã¡ãã®ãã¹ããç°¡æ½ã«ã¾ã¨ã¾ã£ã¦ãã¾ãã
æ¬çãããªããã©1次åæ°å¤æãã©ãããå¤æãªã®ããããã£ã¦ããã£ãï¼
— ãã¨ã (@komugikotori) May 20, 2024
GL(2,â)ã®å ã¯åç¹ãéããç´ç·ããåç¹ãéããç´ç·ãã«ç§»ãããå¾ããå¾ãã«ç§»ãååãä½ããã£ã¦ãã¨ã ãï¼
â» è¡åå¼ã 0 ã§ã¯ãªã n 次ã®æ£æ¹è¡åå
¨ä½ã®éåã n 次ã®ä¸è¬ç·å群 GL(n) ã¨å¼ã³ã¾ããGL(2,â) ã¯æåãè¤ç´ æ°ã§ãããã¨ã表ãã¾ãã2 次æ£æ¹è¡åã®è¡åå¼ã¯ $ad-bc$
ã¨ãªãã0 ã§ãªãæ¡ä»¶ãã¡ãã¦ã¹å¤æã¨ä¸è´ãããããã¡ãã¦ã¹å¤æã®è¡å表ç¾ã¯ GL(2,â) ã«å±ãã¾ããå次座æ¨ã¯ $(a:b)\sim(ca:cb)$
ã®ããã«æ¯ä¾é¢ä¿ãåä¸è¦ãã¾ãããããã¯åç¹ãéãç´ç·ã«å¯¾å¿ãã¾ãããããã¡ãã¦ã¹å¤æã«ãã£ã¦å¥ã®ç´ç·ã«ç§»ãããã¨ãããã¨ã§ãã
æ¬è¨äºãå ¬éããå¾ãå¶ç¶åã話é¡ã«ã¤ãã¦ã®ãã¹ããè¦æãã¾ããã
1次åæ°å¤æã®åæãéå¤æãç§ã¯ææ¥ã§æç®ãããµãããã¦ããããå®ã¯è¡åãç¨ãã¦è¨ç®ãã¦ããï¼ãã¿ã¾ãããããè¨ç®ãã¦ããå çã¯å¤ãã¨æãï¼ãè¡åãé«æ ¡æ°å¦ã«ãã£ãã¨ãã¯ãè¡åãç¨ãã¦ã1次åæ°å¤æåã®æ¼¸åå¼ãã解ã話ããã¦ãããæãããâ¦ãè¡åãé«æ ¡æ°å¦ã«æ»ã£ã¦ããªãããªãã pic.twitter.com/aCm2bJp4l6
— 大澤è£ä¸ (@HirokazuOHSAWA) January 2, 2025
æ¬è¨äºã®å·çã«ããã£ã¦ãMistral 㨠Grok ã® AI ãã£ããã®åçãåèã«ãã¾ããã
https://chat.mistral.ai/chat/03ed8d2d-3e31-4da2-8547-d9a44936d1db
å次座æ¨ã¨ããç¨èªãç¥ããªããããããã¢ã²ã³åº§æ¨ãã¨è¨ã£ã¦ãã¾ãã説æã®ä»æ¹ã¯å¥½ã¿ã§ããhttps://x.com/i/grok/share/6BqZMHqNLD3Z6KnHEMG3T3HGS
ç°¡æ½ã§ããã®èª¬æã好ã¿ã§ãã
é¢é£è¨äº
åããã¨ã DeepSeek-V3 ã«ãèãã¦ã¿ã¾ããã
é常ã®åçã¯ç°¡æ½ã§ãããåããã«ããé¨åãããã¾ããDeepThink ã®åçããã©ã³ã¹ãåãã¦ããããã«æãã¾ãã