proposed
approved
proposed
approved
editing
proposed
Cf. A337735 (denominators).
proposed
editing
editing
proposed
Numerators of the coefficient coefficients in the expansion of li^{-1}(x)/x in powers of 1/LambertW(-1,-e/x).
li^{-1}(x) / x = Sum_{n>=-1} a(n) /A337735(n) * LambertW(-1,-e/x)^(-n).
Function f(t) := Sum_{n>=1} a(n) /A337735(n) * t^{n-1} satisfies the differential equation: t^3*f'(t) + t*(1+2*t)*f(t) - (1+t)*log(1-t^2*f(t)) - t = 0 with f(0) = 1.
proposed
editing
editing
proposed
allocated for Max AlekseyevNumerators of the coefficient in the expansion of li^{-1}(x)/x in powers of 1/LambertW(-1,-e/x).
-1, 0, 1, -3, 11, -105, 613, -12635, 99677, -1774391, 17582819, -1919343719, 22882040099, -295793507053, 1373607474819, -323119030735871, 20600974525589671, -698062672818463097, 12527062232269129201, -474730436062281169829, 9471193365463611988187, -396898731474190849635703
-1,4
li^{-1}(x) / x = Sum_{n>=-1} a(n) * LambertW(-1,-e/x)^(-n).
Martin et al., <a href="https://mathoverflow.net/q/278626">Expansion of inverse logarithmic integral in terms of lambert w</a>, MathOverflow, 2017.
Function f(t) := Sum_{n>=1} a(n) * t^{n-1} satisfies the differential equation: t^3*f'(t) + t*(1+2*t)*f(t) - (1+t)*log(1-t^2*f(t)) - t = 0 with f(0) = 1.
Order:=20: dsolve( { t^3*diff(f(t), t) + t*(1+2*t)*f(t) - (1+t)*log(1-t^2*f(t)) - t = 0, f(0)=1 }, f(t), series);
Cf. A337735 (denominators)
allocated
frac,sign
Max Alekseyev, Sep 17 2020
approved
editing
allocating
allocated
allocated for Max Alekseyev
allocating
approved