OFFSET
-1,4
COMMENTS
li^{-1}(x) / x = Sum_{n>=-1} a(n)/A337735(n) * LambertW(-1,-e/x)^(-n).
LINKS
Martin et al., Expansion of inverse logarithmic integral in terms of lambert w, MathOverflow, 2017.
FORMULA
Function f(t) := Sum_{n>=1} a(n)/A337735(n) * t^{n-1} satisfies the differential equation: t^3*f'(t) + t*(1+2*t)*f(t) - (1+t)*log(1-t^2*f(t)) - t = 0 with f(0) = 1.
MAPLE
Order:=20: dsolve( { t^3*diff(f(t), t) + t*(1+2*t)*f(t) - (1+t)*log(1-t^2*f(t)) - t = 0, f(0)=1 }, f(t), series);
CROSSREFS
KEYWORD
frac,sign
AUTHOR
Max Alekseyev, Sep 17 2020
STATUS
approved