editing
approved
editing
approved
a(n) ~ exp(2*Pi*sqrt(n/3)) * 2^(n-2) / (3*n^2). - Vaclav Kotesovec, May 06 2019
Vaclav Kotesovec, <a href="/A307755/b307755.txt">Table of n, a(n) for n = 0..3000</a>
approved
editing
editing
approved
a:= n-> (p-> add(binomial(n, j)*p(j)*p(n-j), j=0..n))(combinat[numbpart]):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 26 2019
proposed
editing
editing
proposed
editing
proposed
allocated for Ilya GutkovskiyExponential convolution of partition numbers (A000041) with themselves.
1, 2, 6, 18, 58, 184, 586, 1822, 5618, 16980, 50892, 150064, 439210, 1268924, 3640342, 10337596, 29160638, 81570368, 226795202, 626070664, 1718783084, 4689582366, 12730998988, 34373603158, 92385339242, 247099560046, 658137847408, 1745322097886, 4610549234836, 12131656526628
0,2
nmax = 29; CoefficientList[Series[Sum[PartitionsP[k] x^k/k!, {k, 0, nmax}]^2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] PartitionsP[k] PartitionsP[n - k], {k, 0, n}], {n, 0, 29}]
allocated
nonn
Ilya Gutkovskiy, Apr 26 2019
approved
editing