OFFSET
0,2
COMMENTS
Partial sums of A218482.
From Vaclav Kotesovec, Nov 02 2023: (Start)
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
(End)
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/(1-x)*Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: 1/(1-x)*Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: 1/(1-x)*Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: 1/(1-x)*exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: 1/(1-x)*exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: 1/(1-x)*Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
Logarithmic derivative yields A222115.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-1) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...
The g.f. equals the product:
A(x) = 1/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1/(1-x) * (1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...).
The terms begin:
a(0) = 1*1,
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*1 + 1*2 = 5;
a(3) = 1*1 + 3*1 + 3*2 + 1*3 = 13;
a(4) = 1*1 + 4*1 + 6*2 + 4*3 + 1*5 = 34; ...
MATHEMATICA
Table[Sum[Binomial[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jun 25 2015 *)
nmax = 30; CoefficientList[Series[Sum[PartitionsP[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*numbpart(k))}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*prod(k=1, n, (1-x)^k/((1-x)^k-X^k)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*sum(m=0, n, x^m*(1-x)^(m*(m-1)/2)/prod(k=1, m, ((1-x)^k - X^k))), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*sum(m=0, n, x^(m^2)*(1-X)^m/prod(k=1, m, ((1-x)^k - x^k)^2)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*exp(sum(m=1, n+1, x^m/((1-x)^m-X^m)/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*exp(sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/(1-X)*prod(k=1, n, (1 + x^k/(1-X)^k)^valuation(2*k, 2)), n)}
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Paul D. Hanna, Oct 29 2012
STATUS
approved