login

Revision History for A307705

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of Product_{k>=1} 1/(1 - x^k)^(k-phi(k)), where phi() is the Euler totient function (A000010).
(history; published version)
#8 by Vaclav Kotesovec at Mon May 06 07:09:44 EDT 2019
STATUS

editing

approved

#7 by Vaclav Kotesovec at Mon May 06 07:01:10 EDT 2019
FORMULA

a(n) ~ exp(3*((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3) / (2*Pi)^(2/3) + 1/4) * ((Pi^2 - 6)*Zeta(3))^(1/4) / (A^3 * 2^(1/12) * 3^(1/2) * Pi^(5/6) * n^(3/4)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 06 2019

STATUS

approved

editing

#6 by Susanna Cuyler at Mon Apr 22 22:13:59 EDT 2019
STATUS

proposed

approved

#5 by Ilya Gutkovskiy at Mon Apr 22 20:38:42 EDT 2019
STATUS

editing

proposed

#4 by Ilya Gutkovskiy at Mon Apr 22 20:35:40 EDT 2019
#3 by Ilya Gutkovskiy at Mon Apr 22 20:20:00 EDT 2019
NAME

allocated for Ilya GutkovskiyExpansion of Product_{k>=1} 1/(1 - x^k)^(k-phi(k)), where phi() is the Euler totient function (A000010).

DATA

1, 0, 1, 1, 3, 2, 8, 5, 16, 15, 34, 30, 75, 66, 144, 150, 285, 292, 566, 585, 1062, 1170, 1988, 2205, 3729, 4159, 6755, 7785, 12214, 14147, 21957, 25560, 38709, 45839, 67884, 80747, 118332, 141244, 203614, 245330, 348396, 420971, 592439, 717659, 998248, 1215439, 1672544, 2040210, 2786687

OFFSET

0,5

COMMENTS

Euler transform of A051953.

FORMULA

G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(k^2)/sigma_1(k^2)) * x^k/k).

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} cototient(d^2) ) * x^k/k).

MATHEMATICA

nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(k - EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 48; CoefficientList[Series[Exp[Sum[(DivisorSigma[2, k] - DivisorSigma[2, k^2]/DivisorSigma[1, k^2]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 - EulerPhi[d^2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]

KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Apr 22 2019

STATUS

approved

editing

#2 by Ilya Gutkovskiy at Mon Apr 22 20:20:00 EDT 2019
NAME

allocated for Ilya Gutkovskiy

KEYWORD

recycled

allocated

#1 by Russ Cox at Sun Jan 27 08:30:53 EST 2019
KEYWORD

recycled

STATUS

approved