proposed
approved
proposed
approved
editing
proposed
Select[Range[1, 5000, 2], Mod[Binomial[6 #, 2 #], 8] == 7 &] (* Michael De Vlieger, Feb 07 2016 *)
proposed
editing
editing
proposed
from __future__ import division
m2[i+1] += m2[i] # Chai Wah Wu, Feb 05 2016
Chai Wah Wu, <a href="/A268304/b268304.txt">Table of n, a(n) for n = 1..10000</a>
(Python)
A268304_list, b, m1, m2 = [], 15, [21941965946880, -54854914867200, 49244258396160, -19011472727040, 2933960577120, -126898662960, 771887070, 385943535, 385945560], [10569646080, -25763512320, 22419210240, -8309145600, 1209116160, -46992960, 415800, 311850, 311850]
for n in range(10**3):
if b % 8 == 7:
A268304_list.append(2*n+1)
b = b*m1[-1]//m2[-1]
for i in range(8):
m1[i+1] += m1[i]
m2[i+1] += m2[i] # Chai Wah Wu, Feb 05 2016
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
allocated for Michel MarcusOdd numbers n such that binomial(6*n, 2*n) == -1 (mod 8).
1, 5, 21, 73, 85, 273, 293, 297, 329, 341, 529, 545, 1041, 1057, 1089, 1093, 1105, 1173, 1189, 1193, 1297, 1317, 1321, 1353, 1365, 2065, 2081, 2113, 2117, 2129, 2177, 2181, 2209, 2577, 2593, 4113, 4129, 4161, 4165, 4177, 4225, 4229, 4257, 4353, 4357, 4373, 4417, 4421, 4433
1,2
The primes p of this sequence are those that give the even semiprimes of A268303.
Marc Chamberland and Karl Dilcher, <a href="http://dx.doi.org/10.1016/j.jnt.2009.05.010">A Binomial Sum Related to Wolstenholme's Theorem</a>, J. Number Theory, Vol. 171, Issue 11 (Nov. 2009), pp. 2659-2672. See Table 2 p. 2669.
(PARI) isok(n) = (n%2) && Mod(binomial(6*n, 2*n), 8) == Mod(-1, 8);
allocated
nonn
Michel Marcus, Jan 31 2016
approved
editing