editing
approved
editing
approved
a(n) ~ sqrt(c) * d^n / (Pi*n)^(7/2), where d = 222082591.60172024210290001176855308841678706675284935653958249024021852... is the root of the equation 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8 = 0 and c = 0.065002105820899877029614597832047121767362853... . - Vaclav Kotesovec, Mar 23 2016
approved
editing
editing
approved
With[{k = 8}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* Vaclav Kotesovec, Mar 22 2016 *)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A263068/b263068.txt">Table of n, a(n) for n = 0..50</a>
allocated for Alois P. Heinz
Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one or more components by one.
1, 545835, 14623910308237, 874531783382503604463, 74896283763383392805211587121, 7868854300758955660834916406038038395, 943457762940832669626002608045124343895474045, 124069835911824710311393852646151897334844371419287295
0,2
Column k=8 of A262809.
allocated
nonn
Alois P. Heinz, Oct 08 2015
approved
editing
allocated for Alois P. Heinz
allocated
approved