OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..50
FORMULA
a(n) ~ sqrt(c) * d^n / (Pi*n)^(7/2), where d = 222082591.60172024210290001176855308841678706675284935653958249024021852... is the root of the equation 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8 = 0 and c = 0.065002105820899877029614597832047121767362853... . - Vaclav Kotesovec, Mar 23 2016
MATHEMATICA
With[{k = 8}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* Vaclav Kotesovec, Mar 22 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 08 2015
STATUS
approved