proposed
approved
proposed
approved
editing
proposed
b[n_, i_] := b[n, i] = If[i<2, 2^n, If[n<2*i-1, b[n, Quotient[n+1, 2]], Min[b[n, i-1], b[n-i, i]*Prime[i]]]]; a[n_] := b[n, Quotient[n+1, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
approved
editing
editing
approved
For n=4 there are 2 complete partitions: [2,1,1], and [1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 12, 16, respectively. The smallest value is a(4) = 12.
b:= proc(n, i) option remember; `if`(i<2, 2^n,
`if`(n<2*i-1, b(n, iquo(n+1, 2)), min(
b(n, i-1), b(n-i, i)*ithprime(i))))
end:
a:= n-> b(n, iquo(n+1, 2)):
seq(a(n), n=0..60);
Alois P. Heinz, <a href="/A259941/b259941.txt">Table of n, a(n) for n = 0..10000</a>
allocated Smallest Product_{i:lambda} prime(i) for Alois Pany complete partition lambda of n. Heinz
1, 2, 4, 6, 12, 18, 30, 42, 84, 126, 198, 234, 390, 510, 714, 798, 1596, 1932, 2898, 3654, 5382, 6138, 7254, 8658, 14430, 15990, 20910, 21930, 30702, 33558, 37506, 42294, 84588, 94164, 113988, 117852, 176778, 194166, 244818, 259434, 382122, 392886, 448074
0,2
See also A126796.
a(n) = A258118(n,1).
allocated
nonn
Alois P. Heinz, Jul 09 2015
approved
editing
allocated for Alois P. Heinz
allocated
approved