login
A259941
Smallest Product_{i:lambda} prime(i) for any complete partition lambda of n.
6
1, 2, 4, 6, 12, 18, 30, 42, 84, 126, 198, 234, 390, 510, 714, 798, 1596, 1932, 2898, 3654, 5382, 6138, 7254, 8658, 14430, 15990, 20910, 21930, 30702, 33558, 37506, 42294, 84588, 94164, 113988, 117852, 176778, 194166, 244818, 259434, 382122, 392886, 448074
OFFSET
0,2
COMMENTS
A complete partition of n contains at least one partition for any k in {0,...,n}. See also A126796.
LINKS
FORMULA
a(n) = A258118(n,1).
EXAMPLE
For n=4 there are 2 complete partitions: [2,1,1], and [1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 12, 16, respectively. The smallest value is a(4) = 12.
MAPLE
b:= proc(n, i) option remember; `if`(i<2, 2^n,
`if`(n<2*i-1, b(n, iquo(n+1, 2)), min(
b(n, i-1), b(n-i, i)*ithprime(i))))
end:
a:= n-> b(n, iquo(n+1, 2)):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = If[i<2, 2^n, If[n<2*i-1, b[n, Quotient[n+1, 2]], Min[b[n, i-1], b[n-i, i]*Prime[i]]]]; a[n_] := b[n, Quotient[n+1, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A258118.
Sequence in context: A181740 A192224 A167777 * A007436 A052847 A331933
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 09 2015
STATUS
approved