proposed
approved
proposed
approved
editing
proposed
Number of (n+1) X (6+1) 0..1 arrays with every 2X2 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
Column 6 of A253397
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>16.
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10.
Empirical g.f.: x*(476 - 1584*x + 1519*x^2 + 556*x^3 - 1881*x^4 + 1054*x^5 - 48*x^6 - 106*x^7 + 20*x^8 + 12*x^9 - 23*x^10 + 17*x^11 - 5*x^12 + 2*x^14 - x^15) / ((1 - x)^5*(1 + x)). - Colin Barker, Dec 12 2018
Some solutions for n=4:
Column 6 of A253397.
approved
editing
editing
approved
R. H. Hardin, <a href="/A253395/b253395.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of (n+1)X(6+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically
476, 320, 419, 632, 932, 1318, 1855, 2528, 3408, 4498, 5864, 7521, 9542, 11949, 14824, 18197, 22158, 26745, 32056, 38137, 45094, 52981, 61912, 71949, 83214, 95777, 109768, 125265, 142406, 161277, 182024, 204741, 229582, 256649, 286104, 318057
1,1
Column 6 of A253397
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>16
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10
Some solutions for n=4
..0..1..0..1..0..1..1....1..1..1..0..0..0..1....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..1..1..0..0..0..0
..0..1..0..1..0..1..0....1..1..0..0..0..0..0....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..0..0..0..0..0..0
..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
allocated
nonn
R. H. Hardin, Dec 31 2014
approved
editing
allocated for R. H. Hardin
allocated
approved