login
A253395
Number of (n+1) X (6+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
1
476, 320, 419, 632, 932, 1318, 1855, 2528, 3408, 4498, 5864, 7521, 9542, 11949, 14824, 18197, 22158, 26745, 32056, 38137, 45094, 52981, 61912, 71949, 83214, 95777, 109768, 125265, 142406, 161277, 182024, 204741, 229582, 256649, 286104, 318057
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>16.
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10.
Empirical g.f.: x*(476 - 1584*x + 1519*x^2 + 556*x^3 - 1881*x^4 + 1054*x^5 - 48*x^6 - 106*x^7 + 20*x^8 + 12*x^9 - 23*x^10 + 17*x^11 - 5*x^12 + 2*x^14 - x^15) / ((1 - x)^5*(1 + x)). - Colin Barker, Dec 12 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..1..0..1..1....1..1..1..0..0..0..1....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..1..1..0..0..0..0
..0..1..0..1..0..1..0....1..1..0..0..0..0..0....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..0..0..0..0..0..0
..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
CROSSREFS
Column 6 of A253397.
Sequence in context: A210048 A263705 A048428 * A171077 A234077 A205287
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved