proposed
approved
proposed
approved
editing
proposed
Eric Weisstein's MathWorld, World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>
proposed
editing
editing
proposed
K(1/4) = Pi/2 * sqrt( Sum_{n>=0} binomial(2*n,n)^3/16^n * (m*(1/4)*(3/4-m))^n ), where m = 1/4. (End)
From Paul D. Hanna, Mar 25 2024: (Start)
K(1/4) = Pi/2 * Sum_{n>=0} binomial(2*n,n)^2/16^n * (1/4)^n.
K(1/4) = Pi/2 * sqrt( Sum_{n>=0} binomial(2*n,n)^3/16^n * ((1/4)*(3/4))^n ). (End)
approved
editing
proposed
approved
editing
proposed
Steven Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/ge.pdf">Gergonne-Schwarz Surface</a>
Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>
Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>
Steven R. Finch, <a href="/A249282/a249282.pdf">Gergonne-Schwarz Surface</a>, April 12, 2013. [Cached copy, with permission of the author]
approved
editing