login
A249282
Decimal expansion of K(1/4), where K is the complete elliptic integral of the first kind.
6
1, 6, 8, 5, 7, 5, 0, 3, 5, 4, 8, 1, 2, 5, 9, 6, 0, 4, 2, 8, 7, 1, 2, 0, 3, 6, 5, 7, 7, 9, 9, 0, 7, 6, 9, 8, 9, 5, 0, 0, 8, 0, 0, 8, 9, 4, 1, 4, 1, 0, 8, 9, 0, 4, 4, 1, 1, 9, 9, 4, 8, 2, 9, 7, 8, 9, 3, 4, 3, 3, 7, 0, 2, 8, 8, 2, 3, 4, 6, 7, 6, 0, 4, 0, 6, 4, 5, 0, 9, 7, 3, 9, 3, 6, 6, 1, 2, 5, 7, 0, 3, 3
OFFSET
1,2
LINKS
Steven R. Finch, Gergonne-Schwarz Surface, April 12, 2013. [Cached copy, with permission of the author]
Eric Weisstein's World of Mathematics, Complete Elliptic Integral of the First Kind
FORMULA
From Paul D. Hanna, Mar 25 2024: (Start)
K(1/4) = Pi/2 * Sum_{n>=0} binomial(2*n,n)^2/16^n * (1/4)^n.
K(1/4) = Pi/2 * sqrt( Sum_{n>=0} binomial(2*n,n)^3/16^n * (m*(1-m))^n ), where m = 1/4. (End)
EXAMPLE
1.685750354812596042871203657799076989500800894141089...
MAPLE
evalf(EllipticK(1/2), 120); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
RealDigits[EllipticK[1/4], 10, 102] // First
CROSSREFS
Cf. A093341 (K(1/2)), A249283 (K(3/4)).
Sequence in context: A350860 A010501 A296426 * A289090 A260691 A296845
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved