login

Revision History for A245227

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Maximum frustration of complete bipartite graph K(n,5).
(history; published version)
#29 by Peter Luschny at Wed Mar 27 18:39:31 EDT 2019
STATUS

proposed

approved

#28 by Michel Marcus at Wed Mar 27 12:22:54 EDT 2019
STATUS

editing

proposed

#27 by Michel Marcus at Wed Mar 27 12:22:48 EDT 2019
LINKS

G. S. Bowlin, <a href="httphttps://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p10/pdf">Maximum Frustration in Bipartite Signed Graphs</a>, Electr. J. Comb. 19(4) (2012) #P10.

R. L. Graham and N. J. A. Sloane, <a href="http://www.math.ucsd.edu/~ronspubs/85_01_covering_radius.pdf">On the Covering Radius of Codes</a>, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.

P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553.

FORMULA

a(n) = floor(25/16*n) - 1 if n == 2,4,9,13, or 15 mod 16 or if n = 1 or 3; a(n) = floor(25/16*n) otherwise.

a(n) = floor(25/16*n) otherwise

STATUS

proposed

editing

#26 by Jean-François Alcover at Wed Mar 27 12:12:23 EDT 2019
STATUS

editing

proposed

#25 by Jean-François Alcover at Wed Mar 27 12:12:17 EDT 2019
MATHEMATICA

a[n_] := Floor[25 n/16] - If[n == 1 || n == 3 || MemberQ[{2, 4, 9, 13, 15}, Mod[n, 16]], 1, 0];

Array[a, 100] (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)

STATUS

approved

editing

#24 by N. J. A. Sloane at Tue May 02 22:19:09 EDT 2017
LINKS

R. L. Graham and N. J. A. Sloane, <a href="http://www.math.ucsd.edu/~ronspubs/85_01_covering_radius.pdf">On the Covering Radius of Codes</a>, IEEE Trans. Inform. Theory, IT-31(1985), 263-290

Discussion
Tue May 02
22:19
OEIS Server: https://oeis.org/edit/global/2640
#23 by N. J. A. Sloane at Thu Jul 17 19:49:29 EDT 2014
STATUS

editing

approved

#22 by N. J. A. Sloane at Thu Jul 17 19:49:18 EDT 2014
NAME

Maximum frustration of complete bipartite graph K(n,5).

LINKS

G. S. Bowlin, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p10/pdf">Maximum Frustration in Bipartite Signed Graphs</a>, Electr. J. Comb. 19(4) (2012) #P10.

P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553

P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553

STATUS

proposed

editing

Discussion
Thu Jul 17
19:49
N. J. A. Sloane: minor edits
#21 by Robert Israel at Thu Jul 17 19:18:47 EDT 2014
STATUS

editing

proposed

#20 by Robert Israel at Thu Jul 17 19:18:38 EDT 2014
CROSSREFS
Discussion
Thu Jul 17
19:18
Robert Israel: A245230, A245231, A245227, A245239 and A245314 are being submitted simultaneously.