proposed
approved
proposed
approved
editing
proposed
G. S. Bowlin, <a href="httphttps://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p10/pdf">Maximum Frustration in Bipartite Signed Graphs</a>, Electr. J. Comb. 19(4) (2012) #P10.
R. L. Graham and N. J. A. Sloane, <a href="http://www.math.ucsd.edu/~ronspubs/85_01_covering_radius.pdf">On the Covering Radius of Codes</a>, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.
P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553.
a(n) = floor(25/16*n) - 1 if n == 2,4,9,13, or 15 mod 16 or if n = 1 or 3; a(n) = floor(25/16*n) otherwise.
a(n) = floor(25/16*n) otherwise
proposed
editing
editing
proposed
a[n_] := Floor[25 n/16] - If[n == 1 || n == 3 || MemberQ[{2, 4, 9, 13, 15}, Mod[n, 16]], 1, 0];
Array[a, 100] (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)
approved
editing
R. L. Graham and N. J. A. Sloane, <a href="http://www.math.ucsd.edu/~ronspubs/85_01_covering_radius.pdf">On the Covering Radius of Codes</a>, IEEE Trans. Inform. Theory, IT-31(1985), 263-290
editing
approved
Maximum frustration of complete bipartite graph K(n,5).
G. S. Bowlin, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p10/pdf
P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553
P. Solé and T. Zaslavsky, <a href="http://epubs.siam.org/doi/abs/10.1137/S0895480189174374">A Coding Approach to Signed Graphs</a>, SIAM J. Discr. Math 7 (1994), 544-553
proposed
editing
editing
proposed