login

Revision History for A214829

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.
(history; published version)
#27 by Charles R Greathouse IV at Thu Sep 08 08:46:02 EDT 2022
PROG

(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019

Discussion
Thu Sep 08
08:46
OEIS Server: https://oeis.org/edit/global/2944
#26 by Susanna Cuyler at Wed Apr 24 19:46:21 EDT 2019
STATUS

proposed

approved

#25 by G. C. Greubel at Wed Apr 24 16:03:40 EDT 2019
STATUS

editing

proposed

#24 by G. C. Greubel at Wed Apr 24 16:03:10 EDT 2019
FORMULA

G.f.: (x^2-1+6*x-x^2)/(1)/(-x^3+-x^2+-x-1^3).

a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019

MATHEMATICA

LinearRecurrence[{1, 1, 1}, {1, 7, 7}, 40] (* G. C. Greubel, Apr 24 2019 *)

PROG

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019

(Sage) ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019

(GAP) a:=[1, 7, 7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019

STATUS

approved

editing

#23 by N. J. A. Sloane at Sun Jun 04 10:08:06 EDT 2017
STATUS

reviewed

approved

#22 by Joerg Arndt at Sun Jun 04 08:59:36 EDT 2017
STATUS

proposed

reviewed

#21 by Michel Marcus at Sun Jun 04 08:18:29 EDT 2017
STATUS

editing

proposed

#20 by Michel Marcus at Sun Jun 04 08:18:22 EDT 2017
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1).

PROG

(PARI) Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017

STATUS

reviewed

editing

#19 by Omar E. Pol at Sun Jun 04 07:32:25 EDT 2017
STATUS

proposed

reviewed

#18 by Hugo Pfoertner at Sun Jun 04 07:28:24 EDT 2017
STATUS

editing

proposed