(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
proposed
approved
editing
proposed
G.f.: (x^2-1+6*x-x^2)/(1)/(-x^3+-x^2+-x-1^3).
a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019
LinearRecurrence[{1, 1, 1}, {1, 7, 7}, 40] (* G. C. Greubel, Apr 24 2019 *)
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
(Sage) ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
(GAP) a:=[1, 7, 7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1).
(PARI) Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
reviewed
editing
proposed
reviewed
editing
proposed