login

A214829 revision #26


A214829
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.
10
1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535
OFFSET
0,2
COMMENTS
See comments in A214727.
FORMULA
G.f.: (1+6*x-x^2)/(1-x-x^2-x^3).
a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019
MATHEMATICA
LinearRecurrence[{1, 1, 1}, {1, 7, 7}, 40] (* G. C. Greubel, Apr 24 2019 *)
PROG
(PARI) Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
(Sage) ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
(GAP) a:=[1, 7, 7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
KEYWORD
nonn,easy
AUTHOR
Abel Amene, Aug 07 2012
STATUS
approved