login

Revision History for A211713

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of (n+1)X(n+1) -11..11 symmetric matrices with every 2X2 subblock having sum zero and two or three distinct values
(history; published version)
#4 by R. H. Hardin at Fri Apr 20 06:20:01 EDT 2012
STATUS

editing

approved

#3 by R. H. Hardin at Fri Apr 20 06:19:57 EDT 2012
LINKS

R. H. Hardin, <a href="/A211713/b211713.txt">Table of n, a(n) for n = 1..201</a>

#2 by R. H. Hardin at Fri Apr 20 06:19:39 EDT 2012
NAME

allocated for R. H. Hardin

Number of (n+1)X(n+1) -11..11 symmetric matrices with every 2X2 subblock having sum zero and two or three distinct values

DATA

264, 726, 1670, 3574, 7448, 15136, 30436, 60938, 120832, 241150, 476020, 951586, 1878928, 3771022, 7467440, 15063942, 29958046, 60772582, 121463624, 247803532, 497864910, 1021347926, 2062591634, 4253485786, 8631871242, 17886996814

OFFSET

1,1

COMMENTS

Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)

FORMULA

Empirical: a(n) = 5*a(n-1) +23*a(n-2) -149*a(n-3) -196*a(n-4) +2007*a(n-5) +424*a(n-6) -16175*a(n-7) +5683*a(n-8) +87013*a(n-9) -61030*a(n-10) -330011*a(n-11) +313597*a(n-12) +908524*a(n-13) -1043207*a(n-14) -1841180*a(n-15) +2438675*a(n-16) +2754829*a(n-17) -4138459*a(n-18) -3021301*a(n-19) +5162035*a(n-20) +2381895*a(n-21) -4737637*a(n-22) -1297351*a(n-23) +3176171*a(n-24) +447161*a(n-25) -1532186*a(n-26) -72331*a(n-27) +519056*a(n-28) -8146*a(n-29) -118840*a(n-30) +6266*a(n-31) +17252*a(n-32) -1128*a(n-33) -1408*a(n-34) +72*a(n-35) +48*a(n-36)

EXAMPLE

Some solutions for n=3

.-3..0..0..6...-7..4.-1..4..-11..1.-5..1....6.-8..6.-8....2..2..2.-3

..0..3.-3.-3....4.-1.-2.-1....1..9.-5..9...-8.10.-8.10....2.-6..2.-1

..0.-3..3..3...-1.-2..5.-2...-5.-5..1.-5....6.-8..6.-8....2..2..2.-3

..6.-3..3.-9....4.-1.-2.-1....1..9.-5..9...-8.10.-8.10...-3.-1.-3..4

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin Apr 20 2012

STATUS

approved

editing

#1 by R. H. Hardin at Fri Apr 20 06:15:33 EDT 2012
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved