login
A211713
Number of (n+1)X(n+1) -11..11 symmetric matrices with every 2X2 subblock having sum zero and two or three distinct values
1
264, 726, 1670, 3574, 7448, 15136, 30436, 60938, 120832, 241150, 476020, 951586, 1878928, 3771022, 7467440, 15063942, 29958046, 60772582, 121463624, 247803532, 497864910, 1021347926, 2062591634, 4253485786, 8631871242, 17886996814
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) +23*a(n-2) -149*a(n-3) -196*a(n-4) +2007*a(n-5) +424*a(n-6) -16175*a(n-7) +5683*a(n-8) +87013*a(n-9) -61030*a(n-10) -330011*a(n-11) +313597*a(n-12) +908524*a(n-13) -1043207*a(n-14) -1841180*a(n-15) +2438675*a(n-16) +2754829*a(n-17) -4138459*a(n-18) -3021301*a(n-19) +5162035*a(n-20) +2381895*a(n-21) -4737637*a(n-22) -1297351*a(n-23) +3176171*a(n-24) +447161*a(n-25) -1532186*a(n-26) -72331*a(n-27) +519056*a(n-28) -8146*a(n-29) -118840*a(n-30) +6266*a(n-31) +17252*a(n-32) -1128*a(n-33) -1408*a(n-34) +72*a(n-35) +48*a(n-36)
EXAMPLE
Some solutions for n=3
.-3..0..0..6...-7..4.-1..4..-11..1.-5..1....6.-8..6.-8....2..2..2.-3
..0..3.-3.-3....4.-1.-2.-1....1..9.-5..9...-8.10.-8.10....2.-6..2.-1
..0.-3..3..3...-1.-2..5.-2...-5.-5..1.-5....6.-8..6.-8....2..2..2.-3
..6.-3..3.-9....4.-1.-2.-1....1..9.-5..9...-8.10.-8.10...-3.-1.-3..4
CROSSREFS
Sequence in context: A105683 A160971 A235012 * A185764 A253916 A195672
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 20 2012
STATUS
approved