(* _Peter J. C. Moses, _, Dec 30 2011 *)
(* _Peter J. C. Moses, _, Dec 30 2011 *)
_Clark Kimberling (ck6(AT)evansville.edu), _, Dec 31 2011
proposed
approved
editing
proposed
allocated for Clark KimberlingSelf-generating triangle based on symmetric functions.
2, 1, 2, 1, 3, 2, 1, 6, 11, 6, 1, 24, 191, 564, 396, 1, 1176, 435503, 52853928, 1076228496, 1023808896, 1, 2153328000, 1213787658541781999, 58766849935745220643571376, 25431652043775702966453113185344, 29851714119640536870115136698893312
1,1
Let row n+1 be (c0, c1, c2,...,cn). Then
c0*x^n + c1*x^(n-1) +...+ cn=(x+b0)(x+b1)...(x+bm),
where (b0,b1,b2,...,bm) is row n.
row n+1 : f(0,r), f(1,r),...f(n,r), where f(k,r)=(k-th elementary symmetric function), r=(row n).
First five rows:
2
1....2
1....3......2
1....6......11......6
1....24....191....564....396
The factorization property is illustrated by
x^2 + 3x + 2 -> (x+1)(x+3)(x+2) = x^3 + 6x^2 + 11x + 6.
Cf. A203300.
allocated
nonn,tabl
Clark Kimberling (ck6(AT)evansville.edu), Dec 31 2011
approved
editing
allocated for Clark Kimberling
allocated
approved